68 research outputs found

    The RNA sequence context defines the mechanistic routes by which yeast arginyl-tRNA synthetase charges tRNA.

    Get PDF
    Arginylation of tRNA transcripts by yeast arginyl-tRNA synthetase can be triggered by two alternate recognition sets in anticodon loops: C35 and U36 or G36 in tRNA(Arg) and C36 and G37 in tRNA(Asp) (Sissler M, Giegé R, Florentz C, 1996, EMBO J 15:5069-5076). Kinetic studies on tRNA variants were done to explore the mechanisms by which these sets are expressed. Although the synthetase interacts in a similar manner with tRNA(Arg) and tRNA(Asp), the details of the interaction patterns are idiosyncratic, especially in anticodon loops (Sissler M, Eriani G, Martin F, Giegé R, Florentz C, 1997, Nucleic Acids Res 25:4899-4906). Exchange of individual recognition elements between arginine and aspartate tRNA frameworks strongly blocks arginylation of the mutated tRNAs, whereas full exchange of the recognition sets leads to efficient arginine acceptance of the transplanted tRNAs. Unpredictably, the similar catalytic efficiencies of native and transplanted tRNAs originate from different k(cat) and Km combinations. A closer analysis reveals that efficient arginylation results from strong anticooperative effects between individual recognition elements. Nonrecognition nucleotides as well as the tRNA architecture are additional factors that tune efficiency. Altogether, arginyl-tRNA synthetase is able to utilize different context-dependent mechanistic routes to be activated. This confers biological advantages to the arginine aminoacylation system and sheds light on its evolutionary relationship with the aspartate system.comparative studyjournal articleresearch support, non-u.s. gov't1998 Junimporte

    Sequences outside recognition sets are not neutral for tRNA aminoacylation. Evidence for nonpermissive combinations of nucleotides in the acceptor stem of yeast tRNAPhe.

    Get PDF
    Phenylalanine identity of yeast tRNAPhe is governed by five nucleotides including residues A73, G20, and the three anticodon nucleotides (Sampson et al., 1989, Science 243, 1363-1366). Analysis of in vitro transcripts derived from yeast tRNAPhe and Escherichia coli tRNAAla bearing these recognition elements shows that phenylalanyl-tRNA synthetase is sensitive to additional nucleotides within the acceptor stem. Insertion of G2-C71 has dramatic negative effects in both tRNA frameworks. These effects become compensated by a second-site mutation, the insertion of the wobble G3-U70 pair, which by itself has no effect on phenylalanylation. From a mechanistic point of view, the G2-C71/G3-U70 combination is not a "classical" recognition element since its antideterminant effect is compensated for by a second-site mutation. This enlarges our understanding of tRNA identity that appears not only to be the outcome of a combination of positive and negative signals forming the so-called recognition/identity set but that is also based on the presence of nonrandom combinations of sequences elsewhere in tRNA. These sequences, we name "permissive elements," are retained by evolution so that they do not hinder aminoacylation. Likely, no nucleotide within a tRNA is of random nature but has been selected so that a tRNA can fulfill all its functions efficiently.journal articleresearch support, non-u.s. gov't1998 May 08importe

    Synthetic polyamines stimulate in vitro transcription by T7 RNA polymerase.

    Get PDF
    The influence of nine synthetic polyamines on in vitro transcription with T7 RNA polymerase has been studied. The compounds used were linear or macrocyclic tetra- and hexaamine, varying in their size, shape and number of protonated groups. Their effect was tested on different types of templates, all presenting the T7 RNA promoter in a double-stranded form followed by sequences encoding short transcripts (25 to 35-mers) either on single- or double-stranded synthetic oligodeoxyribonucleotides. All polyamines used stimulate transcription of both types of templates at levels dependent on their size, shape, protonation degree, and concentration. For each compound, an optimal concentration could be defined; above this concentration, transcription inhibition occurred. Highest stimulation (up to 12-fold) was obtained by the largest cyclic compound called [38]N6C10.comparative studyjournal articleresearch support, non-u.s. gov't1994 Jul 25importe

    Search for characteristic structural features of mammalian mitochondrial tRNAs.

    Get PDF
    A number of mitochondrial (mt) tRNAs have strong structural deviations from the classical tRNA cloverleaf secondary structure and from the conventional L-shaped tertiary structure. As a consequence, there is a general trend to consider all mitochondrial tRNAs as "bizarre" tRNAs. Here, a large sequence comparison of the 22 tRNA genes within 31 fully sequenced mammalian mt genomes has been performed to define the structural characteristics of this specific group of tRNAs. Vertical alignments define the degree of conservation/variability of primary sequences and secondary structures and search for potential tertiary interactions within each of the 22 families. Further horizontal alignments ascertain that, with the exception of serine-specific tRNAs, mammalian mt tRNAs do fold into cloverleaf structures with mostly classical features. However, deviations exist and concern large variations in size of the D- and T-loops. The predominant absence of the conserved nucleotides G18G19 and T54T55C56, respectively in these loops, suggests that classical tertiary interactions between both domains do not take place. Classification of the tRNA sequences according to their genomic origin (G-rich or G-poor DNA strand) highlight specific features such as richness/poorness in mismatches or G-T pairs in stems and extremely low G-content or C-content in the D- and T-loops. The resulting 22 "typical" mammalian mitochondrial sequences built up a phylogenetic basis for experimental structural and functional investigations. Moreover, they are expected to help in the evaluation of the possible impacts of those point mutations detected in human mitochondrial tRNA genes and correlated with pathologies.journal articleresearch support, non-u.s. gov't2000 Octimporte

    Loss of a primordial identity element for a mammalian mitochondrial aminoacylation system.

    Get PDF
    In mammalian mitochondria the translational machinery is of dual origin with tRNAs encoded by a simplified and rapidly evolving mitochondrial (mt) genome and aminoacyl-tRNA synthetases (aaRS) coded by the nuclear genome, and imported. Mt-tRNAs are atypical with biased sequences, size variations in loops and stems, and absence of residues forming classical tertiary interactions, whereas synthetases appear typical. This raises questions about identity elements in mt-tRNAs and adaptation of their cognate mt-aaRSs. We have explored here the human mt-aspartate system in which a prokaryotic-type AspRS, highly similar to the Escherichia coli enzyme, recognizes a bizarre tRNA(Asp). Analysis of human mt-tRNA(Asp) transcripts confirms the identity role of the GUC anticodon as in other aspartylation systems but reveals the non-involvement of position 73. This position is otherwise known as the site of a universally conserved major aspartate identity element, G73, also known as a primordial identity signal. In mt-tRNA(Asp), position 73 can be occupied by any of the four nucleotides without affecting aspartylation. Sequence alignments of various AspRSs allowed placing Gly-269 at a position occupied by Asp-220, the residue contacting G73 in the crystallographic structure of E. coli AspRS-tRNA(Asp) complex. Replacing this glycine by an aspartate renders human mt-AspRS more discriminative to G73. Restriction in the aspartylation identity set, driven by a rapid mutagenic rate of the mt-genome, suggests a reverse evolution of the mt-tRNA(Asp) identity elements in regard to its bacterial ancestor.journal articleresearch support, non-u.s. gov't2006 Jun 092006 04 05importe

    Determinant nucleotides of yeast tRNA(Asp) interact directly with aspartyl-tRNA synthetase.

    Get PDF
    The interaction of wild-type and mutant yeast tRNA(Asp) transcripts with yeast aspartyl-tRNA synthetase (AspRS; EC 6.1.1.12) has been probed by using iodine cleavage of phosphorothioate-substituted transcripts. AspRS protects phosphates in the anticodon (G34, U35), D-stem (U25), and acceptor end (G73) that correspond to determinant nucleotides for aspartylation. This protection, as well as that in anticodon stem (C29, U40, G41) and D-stem (U11 to U13), is consistent with direct interaction of AspRS at these phosphates. Other protection, in the variable loop (G45), D-loop (G18, G19), and T-stem and loop (G53, U54, U55), as well as enhanced reactivity at G37, may result from conformational changes of the transcript upon binding to AspRS. Transcripts mutated at determinant positions showed a loss of phosphate protection in the region of the mutation while maintaining the global protection pattern. The ensemble of results suggests that aspartylation specificity arises from both protein-base and protein-phosphate contacts and that different regions of tRNA(Asp) interact independently with AspRS. A mutant transcript of yeast tRNA(Phe) that contains the set of identity nucleotides for specific aspartylation gave a phosphate protection pattern strikingly similar to that of wild-type tRNA(Asp). This confirms that a small number of nucleotides within a different tRNA sequence context can direct specific interaction with synthetase.journal articleresearch support, non-u.s. gov't1992 Jul 01importe

    Tyrosyl-tRNA synthetase: the first crystallization of a human mitochondrial aminoacyl-tRNA synthetase.

    Get PDF
    Human mitochondrial tyrosyl-tRNA synthetase and a truncated version with its C-terminal S4-like domain deleted were purified and crystallized. Only the truncated version, which is active in tyrosine activation and Escherichia coli tRNA(Tyr) charging, yielded crystals suitable for structure determination. These tetragonal crystals, belonging to space group P4(3)2(1)2, were obtained in the presence of PEG 4000 as a crystallizing agent and diffracted X-rays to 2.7 A resolution. Complete data sets could be collected and led to structure solution by molecular replacement.journal articleresearch support, non-u.s. gov't2007 Apr 012007 03 30importe

    J Biol Chem

    No full text

    Cristallogenèse et études structurales appliquées aux aminoacyl-ARNt synthétases

    No full text
    La GlnRS de Deinococcus radiodurans se distingue des autres GlnRS par la présence d'un appendice additionnel en C-terminal (C-ter). Celui-ci adopterait le même repliement que la famille de protéines YqeY de fonction inconnue et une région de la sous-unité GatB de l'AdT. Son architecture atypique, trouvée dans 4 organismes, corresponds à la fusion de protéine de la voie directe et indirecte d'aminoacylation des ARNt. La structure cristallographique de la GlnRS-Dr n a pas permis de résoudre la région C-ter, la maille étant suffisamment large pour l accommoder. Des analyses en RMN du C-ter isolé ont confirmé la présence d'une région majoritairement structurée. D'autres structures ont été résolues en présence de petits substrats (glutamine, analogues d adénylate) ainsi que la forme tronquée en C-ter. Dans 2 cas, une conformation verrouillée unique du site actif a été mise en évidence. Des analyses structurales et fonctionnelles et les propriétés de l empilement cristallin sont exposées.Glutaminyl-tRNA synthetase from Deinococcus radiodurans (GlnRS-Dr) distinguishes from known GlnRSs by the presence additional long insertions. A C-terminal extension (C-ter) is predicted to adopt the same fold as part of an amidotransferase (AdT) subunit making this GlnRS almost unique among its homologs since it corresponds to the fusion of protein domains from both direct and indirect pathways of tRNA aminoacylation. In the crystal structure of GlnRS-Dr, C-ter was not solved although the unit cell was large enough to accommodate it. In the same time, NMR analysis of the extension confirmed the presence of a well structured region. Additional structures were solved in the presence of small substrates (glutamine, 2 adenylate analogs) and the C-terminal truncated form as well. In 2 cases, it leads to the stabilization of an insertion loop closing the active site. Structure analysis, functional implication, crystal packing and plasticity properties are discussed.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF

    Aspects fonctionnels et structuraux de la régulation de l'expression d'une aminoacyl-ARNt synthétase eucaryote (l'aspartyl-ARNt synthétase de Saccharomyces cerevisiae)

    No full text
    L'aminoacylation spécifique des ARN de transfert (ARNt) par l'acide aminé homologue est catalysée par les aminoacyl-ARNt synthétases (aaRS). L'aspartyl-ARNt synthétase (AspRS) de Saccharomyces cerevisiae reconnaît spécifiquement, non seulement l'ARNtAsp, mais également son propre ARN messager (ARNmAspRS).Le complexe formé entre l'AspRS et son ARNmAspRS est l'étape initiale du mécanisme de rétro-régulation de l'expression de l'AspRS. Celle-ci est caractérise e par trois originalités, (i) L'AspRS est présente dans le noyau, (ii) c'est une régulation transcriptionnelle médiée par l'interaction de l'AspRS avec son propre ARNm et (iii) elle implique une coordination de l'expression de l'AspRS avec la concentration cellulaire en ARNt.L'interaction AspRS/ARNmAspRS a été caractérisée au niveau structural par cartographie en solution. Les régions d'ARNm reconnues par l'AspRS ont été identifiées au moyen d'expériences d'empreinte et de mutagenèse dirigée. La structure secondaire est originale à plusieurs égards : (i) elle s'organise en deux domaines indépendants; (ii) chacun est reconnu par un monomère de l'enzyme; (iii) un des domaines mime la branche anticodon de l'ARNtAsp avec un triplet anticodon GUC.Les conséquences physiologiques induites par une augmentation de la concentration en AspRS ont été également abordées. In vitro, l'aspartylation de l'ensemble des ARNt de levure en présence de concentrations croissantes en enzyme a montré que l'AspRS aspartyle de façon incorrecte l'ARNtGlu et l'ARNtAsn. In vivo, la construction d'un gène rapporteur conférant à la levure une résistance à la généticine n'a pas permis de détecter cette aspartylation incorrecte, en revanche, le suivi du protéome de la levure lorsque l'AspRS est surexprimée a établi les conditions d'accumulation de l'AspRS dans la cellule suggérant l'existence d'un verrou supplémentaire pour contenir l'aspartylation et assurer la survie de la cellule.Accurate translation of genetic information necessitates the tuned expression of a large group of genes. Amongst them, controlled expression of the enzymes catalyzing the aminoacylation of tRNAs, the aminoacyl-tRNA synthetases (aaRS), is essential to insure translational fidelity. Here, it is shown that expression of AspRS is regulated in Saccharomyces cerevisiae by a feedback mechanism, that necessitates the binding of AspRS to its messenger RNA. The correlation between AspRS expression and mRNAAspRS and tRNAAsp concentrations, as well as the presence of AspRS in the nucleus, suggest an original regulation mechanism. It is proposed that the surplus of AspRS, not sequestered by tRNAAsp, is imported in the nucleus where it binds to mRNAAspRS and thus inhibits its accumulation.We have established the folding of the 300-nucleotides long 5' end of mRNAApRS and identified the structural signals involved in the regulation process. We propose that the mRNAAspRS fragment folds in two independent and symmetrically structured domains spaced by two single-stranded connectors. Domain I displays a tRNAAsp anticodon-like stem-loop structure that is restricted in domain II to a short double-stranded helix. The overall mRNA structure, based on enzymatic and chemical probing, support a model where each monomer of yeast AspRS binds one individual domain and recognizes the mRNA structure like it recognizes its cognate tRNAAsp.Finally, the consequences of an increased concentration of AspRS in the cell have been tested. In vitro, high AspRS concentrations lead to mis-aspartylation of tRNAAsn and tRNAGlu. In vivo, the design of a reporter gene conferring an antibiotic resistance, dependent on mischarged tRNAs, did not allow to detect any cross aminoacylation. However, the proteomic analysis of yeasts overexpressing AspRS pointed out the conditions of AspRS accumulation in the cell by detecting the presence of an additional control mechanism at the post-translational level.STRASBOURG-Sc. et Techniques (674822102) / SudocSudocFranceF
    • …
    corecore