691 research outputs found

    Physical electrostatics of small field emitter arrays/clusters

    Get PDF
    This paper improves understanding of electrostatic influences on apex field enhancement factors (AFEFs) for small field emitter arrays. Using the "floating sphere at emitter-plate potential" (FSEPP) model, it re-examines the electrostatics and mathematics of three simple systems of identical post-like emitters. For the isolated emitter, various approaches are noted. On need consider only the effects of sphere charges and (for separated emitters) image charges. For the 2-emitter system, formulas are found for "charge-blunting" and "neighbour-field" effects, for widely spaced and "sufficiently closely spaced" emitters. Mutual charge-blunting is always dominant, with a related (negative) fractional AFEF-change {\delta}_two. For sufficiently small emitter spacing c, |{\delta}_two| varies as 1/c; for large spacing, |{\delta}_two| decreases as 1/c^3. In a 3-emitter linear array, differential charge-blunting and differential neighbor-field effects occur, but the former are dominant, and cause the "exposed" outer emitters to have higher AFEF ({\gamma}_0) than the central emitter ({\gamma}_1). Formulas are found for the exposure ratio {\Xi}={\gamma}_0/{\gamma}_1, for large and for sufficiently small separations. The FSEPP model for an isolated emitter has accuracy around 30%. Line-charge models (LCMs) are an alternative, but an apparent difficulty with recent LCM models is identified. Better descriptions of array electrostatics may involve developing good fitting equations for AFEFs derived from accurate numerical solution of Laplace's equation, perhaps with equation form(s) guided qualitatively by FSEPP-model results. In existing fitting formulas, the AFEF-reduction decreases exponentially as c increases, which differs from FSEPP-model formulas. FSEPP models might provide a useful guide to the qualitative behaviour of small field emitter clusters larger than those investigated.Comment: 34 pages, including 3 figures, with an extra 7 pages of Supplementary Material (giving details of algebraic analysis); v3 is slightly revised version, submitted after reviewin

    The Murphy-Good plot: a better method of analysing field emission data

    Get PDF
    Measured field electron emission (FE) current-voltage Im(Vm) data are traditionally analysed via Fowler-Nordheim (FN) plots, as ln{Im/(Vm)**2} vs 1/Vm. These have been used since 1929, because in 1928 FN predicted they would be linear. In the 1950s, a mistake in FN's thinking was found. Corrected theory by Murphy and Good (MG) made theoretical FN plots slightly curved. This causes difficulties when attempting to extract precise values of emission characterization parameters from straight lines fitted to experimental FN plots. Improved mathematical understanding, from 2006 onwards, has now enabled a new FE data-plot form, the "Murphy-Good plot". This plots ln{Im/(Vm)**(2-({\eta}/6)} vs 1/Vm, where {\eta} depends only on local work function. Modern ("21st century") MG theory predicts that a theoretical MG plot should be "almost exactly" straight. This makes precise extraction of well-defined characterization parameters from ideal I_m(V_m) data much easier. This article gives the theory needed to extract characterization parameters from MG plots, setting it within the framework of wider difficulties in interpreting FE Im(Vm) data (among them, use of the "planar emission approximation"). Careful use of MG plots could also help remedy other problems in FE technological literature. It is argued MG plots should now supersede FN plots.Comment: Intended articl

    Improved approach to Fowler-Nordheim plot analysis

    Full text link
    This article introduces an improved approach to Fowler-Nordheim (FN) plot analysis, based on a new type of intercept correction factor. This factor is more cleanly defined than the factor previously used. General enabling theory is given that applies to any type of FN plot of data that can be fitted using a FN-type equation. Practical use is limited to emission situations where slope correction factors can be reliably predicted. By making a series of well-defined assumptions and approximations, it is shown how the general formulas reduce to provide an improved theory of orthodox FN-plot data analysis. This applies to situations where the circuit current is fully controlled by the emitter characteristics, and tunneling can be treated as taking place through a Schottky-Nordheim (SN) barrier. For orthodox emission, good working formulas make numerical evaluation of the slope correction factor and the new intercept correction factor quick and straightforward. A numerical illustration, using simulated emission data, shows how to use this improved approach to derive values for parameters in the full FN-type equation for the SN barrier. Good self-consistency is demonstrated. The general enabling formulas also pave the way for research aimed at developing analogous data-analysis procedures for non-orthodox emission situations.Comment: Paper is extended version of poster presented at the 25th International Vacuum Nanoelectronics Conference, Jeju island, South Korea, July 2012. Third version includes small changes made at proof correction stag

    Comment on "Advanced field emission measurement techniques for research on modern cold cathode materials and their applications for transmission-type x-ray sources" [Rev. Sci. Instrum. 91, 083906 (2020)]

    Full text link
    This Comment suggests that technological field electron emission (FE) papers, such as the paper under discussion [P. Serbun et al.,, Rev. Sci. Instrum. 91, 083906 (2020)], should use FE theory based on the 1956 work of Murphy and Good (MG), rather than a simplified version of FE theory based on the original 1928 work of Fowler and Nordheim (FN). Use of the 1928 theory is common practice in technological FE literature, but the MG treatment is known to be better physics than the FN treatment, which contains identifiable errors. The MG treatment predicts significantly higher emission current densities and currents for emitters than does the FN treatment. From the viewpoint of the research and development of electron sources, it is counterproductive (and unhelpful for non-experts) for the technological FE literature to use theory that undervalues the performance of field electron emitters.Comment: 2 published page

    21st Century Planar Field Emission Theory and its Role in Vacuum Breakdown Science

    Full text link
    For explaining electrical breakdown, field electron emission (FE) is a mechanism of interest. In the period 2006 to 2010 there were significant developments in basic FE theory, but these have not yet fully entered general thinking in technological FE areas, which are often still based on 1960s thinking or (in some contexts) 1920s thinking about FE theory. This paper outlines the history of FE theory and provides an overview of modern developments and of some related topics, in so far as these affect the interpretation of experiments and the explanation of physical phenomena. The paper concentrates on principles, with references given where details can be found. Some suggestions are made about moving to the use of "21st-Century" FE theory. In addition, an error in Feynman's treatment of the electrostatics of pointed conductors is displayed, and it is found that Zener tunneling is implausible as a primary cause of vacuum breakdown from a CuO overlayer.Comment: 8 pages, 1 figure. Originally presented at the 29th International Symposium on Discharges and Electrical Insulation in Vacuum (hosted virtually from Padova, September 2021). This version (v2) corrects typographic errors (including two in an equation) in the original arXiv verwion and the published versio

    Field emission: applying the "magic emitter" validity test to a recent paper, and related research-literature integrity issues

    Full text link
    This work concerns studies of field electron emission (FE) from large area emitters. It discusses--and where possible corrects--several literature weaknesses related to the analysis of experimental current-voltage data and related emitter characterization, using a recent paper in Applied Surface Science to exemplify these weaknesses. One weakness, not detected in the published paper, is that current-density experiments and related theoretical predictions there differ by a large factor, in this case of order 10^(16). The work also shows that a recently introduced validity test--the "magic emitter" test--can be used, at the immediate-pre-submission or review stages, to help uncover scientific problems. More generally, in the literature of FE from large area emitters over the last 15 years or so, there appear to be many papers (perhaps hundreds of papers) with some or all of the weaknesses discussed. The scientific integrity of this research area, and of the related peer review processes, appear to be significantly broken, and attempts to correct the situation by the normal processes of science have had limited effect. There seems a growing case for independent wider investigation into research integrity issues of this general kind, and possibly for later action by Governments.Comment: 15 pages, 0 figures. Submitted for publication. v2 has typos corrected and conclusions section slightly extende
    • …
    corecore