20 research outputs found
A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance - the T Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program
T mapping and extracellular volume (ECV) have the potential to guide patient care and serve as surrogate end-points in clinical trials, but measurements differ between cardiovascular magnetic resonance (CMR) scanners and pulse sequences. To help deliver T mapping to global clinical care, we developed a phantom-based quality assurance (QA) system for verification of measurement stability over time at individual sites, with further aims of generalization of results across sites, vendor systems, software versions and imaging sequences. We thus created T1MES: The T1 Mapping and ECV Standardization Program.
A design collaboration consisting of a specialist MRI small-medium enterprise, clinicians, physicists and national metrology institutes was formed. A phantom was designed covering clinically relevant ranges of T and T in blood and myocardium, pre and post-contrast, for 1.5 T and 3 T. Reproducible mass manufacture was established. The device received regulatory clearance by the Food and Drug Administration (FDA) and Conformité Européene (CE) marking.
The T1MES phantom is an agarose gel-based phantom using nickel chloride as the paramagnetic relaxation modifier. It was reproducibly specified and mass-produced with a rigorously repeatable process. Each phantom contains nine differently-doped agarose gel tubes embedded in a gel/beads matrix. Phantoms were free of air bubbles and susceptibility artifacts at both field strengths and T maps were free from off-resonance artifacts. The incorporation of high-density polyethylene beads in the main gel fill was effective at flattening the field. T and T values measured in T1MES showed coefficients of variation of 1 % or less between repeat scans indicating good short-term reproducibility. Temperature dependency experiments confirmed that over the range 15-30 °C the short-T tubes were more stable with temperature than the long-T tubes. A batch of 69 phantoms was mass-produced with random sampling of ten of these showing coefficients of variations for T of 0.64 ± 0.45 % and 0.49 ± 0.34 % at 1.5 T and 3 T respectively.
The T1MES program has developed a T mapping phantom to CE/FDA manufacturing standards. An initial 69 phantoms with a multi-vendor user manual are now being scanned fortnightly in centers worldwide. Future results will explore T mapping sequences, platform performance, stability and the potential for standardization.This project has been funded by a European Association of Cardiovascular Imaging (EACVI part of the ESC) Imaging Research Grant, a UK National Institute of Health Research (NIHR) Biomedical Research Center (BRC) Cardiometabolic Research Grant at University College London (UCL, #BRC/ 199/JM/101320), and a Barts Charity Research Grant (#1107/2356/MRC0140). G.C. is supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC) and by the NIHR UCL Hospitals Biomedical Research Center. J.C.M. is directly and indirectly supported by the UCL Hospitals NIHR BRC and Biomedical Research Unit at Barts Hospital respectively. This work was in part supported by an NIHR BRC award to Cambridge University Hospitals NHS Foundation Trust and NIHR Cardiovascular Biomedical Research Unit support at Royal Brompton Hospital London UK
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
Recommended from our members
Averting biodiversity collapse in tropical forest protected areas
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon¹⁻³. With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses⁴⁻⁹. As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world’s major tropical regions. Our analysis reveals great variation in reserve ‘health’: about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.Keywords: Ecology, Environmental scienc
Cell Adhesion Molecule Distribution Relative to Neutrophil Surface Topography Assessed by TIRFM
The positioning of adhesion molecules relative to the microtopography of the cell surface has a significant influence on the molecule's availability to form adhesive contacts. Measurements of the ratio of fluorescence intensity per unit area in epi-fluorescence images versus total internal reflection fluorescence images provides a means to assess the relative accessibility for bond formation of different fluorescently labeled molecules in cells pressed against a flat substrate. Measurements of the four principal adhesion molecules on human neutrophils reveal that L-selectin has the highest ratio of total internal reflection fluorescence/epi intensity, and that P-selectin glycoprotein ligand-1 (PSGL-1) and the integrins αLβ2 (LFA-1) and αMβ2 (Mac-1) have ratios similar to each other but lower than for L-selectin. All of the ratios increased with increasing impingement, indicating an alteration of surface topography with increasing surface compression. These results are consistent with model predictions for molecules concentrated near the tips of microvilli in the case of L-selectin, and sequestered away from the microvillus tips in the case of LFA-1, Mac-1, and PSGL-1. The results confirm differences among adhesion molecules in their surface distribution and reveal how the availability of specific adhesion molecules is altered by mechanical compression of the surface in live cells
Recommended from our members
Conjugation of DNA to Silanized Colloidal Semiconductor Nanocrystalline Quantum Dots
Water-soluble, highly fluorescent, silanized semiconductor nanocrystals with different surface charges were synthesized. To covalently attach the nanocrystals to biological macromolecules with a variety of mild coupling chemistries, the outermost siloxane shells were derivatized with thiol, amino, or carboxyl functional groups. Single- or double-stranded DNA was coupled to the nanocrystal surfaces by using commercially available bifunctional cross-linker. Conjugation had little effect on the optical properties of the nanocrystals, and the resulting conjugates were more stable than previously reported systems. By using the strategies developed in this study, most biomolecules can be covalently coupled to semiconductor nanocrystals. These nanocrystal-DNA conjugates promise to be a versatile tool for fluorescence imaging and probing of biological systems