1,422 research outputs found
Mlh2 is an accessory factor for DNA mismatch repair in Saccharomyces cerevisiae.
In Saccharomyces cerevisiae, the essential mismatch repair (MMR) endonuclease Mlh1-Pms1 forms foci promoted by Msh2-Msh6 or Msh2-Msh3 in response to mispaired bases. Here we analyzed the Mlh1-Mlh2 complex, whose role in MMR has been unclear. Mlh1-Mlh2 formed foci that often colocalized with and had a longer lifetime than Mlh1-Pms1 foci. Mlh1-Mlh2 foci were similar to Mlh1-Pms1 foci: they required mispair recognition by Msh2-Msh6, increased in response to increased mispairs or downstream defects in MMR, and formed after induction of DNA damage by phleomycin but not double-stranded breaks by I-SceI. Mlh1-Mlh2 could be recruited to mispair-containing DNA in vitro by either Msh2-Msh6 or Msh2-Msh3. Deletion of MLH2 caused a synergistic increase in mutation rate in combination with deletion of MSH6 or reduced expression of Pms1. Phylogenetic analysis demonstrated that the S. cerevisiae Mlh2 protein and the mammalian PMS1 protein are homologs. These results support a hypothesis that Mlh1-Mlh2 is a non-essential accessory factor that acts to enhance the activity of Mlh1-Pms1
Submicron silicon powder production in an aerosol reactor
Powder synthesis by thermally induced vapor phase reactions is described. The powder generated by this technique consists of spherical, nonagglomerated particles of high purity. The particles are uniform in size, in the 0.1–0.2 µm size range. Most of the particles are crystalline spheres. A small fraction of the spheres are amorphous. Chain agglomerates account for less than 1% of the spherules
Nonexistence of conformally flat slices of the Kerr spacetime
Initial data for black hole collisions are commonly generated using the
Bowen-York approach based on conformally flat 3-geometries. The standard
(constant Boyer-Lindquist time) spatial slices of the Kerr spacetime are not
conformally flat, so that use of the Bowen-York approach is limited in dealing
with rotating holes. We investigate here whether there exist foliations of the
Kerr spacetime that are conformally flat. We limit our considerations to
foliations that are axisymmetric and that smoothly reduce in the Schwarzschild
limit to slices of constant Schwarzschild time. With these restrictions, we
show that no conformally flat slices can exist.Comment: 5 LaTeX pages; no figures; to be submitted to Phys. Rev.
Initial Data and Coordinates for Multiple Black Hole Systems
We present here an alternative approach to data setting for spacetimes with
multiple moving black holes generalizing the Kerr-Schild form for rotating or
non-rotating single black holes to multiple moving holes. Because this scheme
preserves the Kerr-Schild form near the holes, it selects out the behaviour of
null rays near the holes, may simplify horizon tracking, and may prove useful
in computational applications. For computational evolution, a discussion of
coordinates (lapse function and shift vector) is given which preserves some of
the properties of the single-hole Kerr-Schild form
Understanding initial data for black hole collisions
Numerical relativity, applied to collisions of black holes, starts with
initial data for black holes already in each other's strong field. The initial
hypersurface data typically used for computation is based on mathematical
simplifying prescriptions, such as conformal flatness of the 3-geometry and
longitudinality of the extrinsic curvature. In the case of head on collisions
of equal mass holes, there is evidence that such prescriptions work reasonably
well, but it is not clear why, or whether this success is more generally valid.
Here we study these questions by considering the ``particle limit'' for head on
collisions of nonspinning holes. Einstein's equations are linearized in the
mass of the small hole, and described by a single gauge invariant spacetime
function psi, for each multipole. The resulting equations have been solved by
numerical evolution for collisions starting from various initial separations,
and the evolution is studied on a sequence of hypersurfaces. In particular, we
extract hypersurface data, that is psi and its time derivative, on surfaces of
constant background Schwarzschild time. These evolved data can then be compared
with ``prescribed'' data, evolved data can be replaced by prescribed data on
any hypersurface, and evolved further forward in time, a gauge invariant
measure of deviation from conformal flatness can be evaluated, etc. The main
findings of this study are: (i) For holes of unequal mass the use of prescribed
data on late hypersurfaces is not successful. (ii) The failure is likely due to
the inability of the prescribed data to represent the near field of the smaller
hole. (iii) The discrepancy in the extrinsic curvature is more important than
in the 3-geometry. (iv) The use of the more general conformally flat
longitudinal data does not notably improve this picture.Comment: 20 pages, REVTEX, 26 PS figures include
Recommended from our members
Isostructurality of quinoxaline crystal phases: The interplay of weak hydrogen bonds and halogen bonding
YesTailoring the physical properties of molecular crystals though the construction of solid solutions requires the existence of isostructural crystals. Simple substitutions of a given molecular framework can give a range of different crystal structures. A set of quinoxaline derivatives, C8H4N2(C6H4X)2,Q3,3′X2, has been investigated (X = F, Cl, Br, I and Me) where kinetic factors generated a set of isostructural crystals for the lighter halogens (F, Cl, Br) alone. Computational analysis shows that the stabilising interactions are maximal for Cl, while DSC studies demonstrate the existence of more stable polymorphs for both F and Br containing systems. Steric factors appear to have a lower contribution than the balance of weaker hydrogen and halogen bonding shown by the Me and I containing systems displaying different packing driven by CH⋯N/CH⋯π bonds and I⋯I bonds respectively
Black Hole Data via a Kerr-Schild Approach
We present a new approach for setting initial Cauchy data for multiple black
hole spacetimes. The method is based upon adopting an initially Kerr-Schild
form of the metric. In the case of non-spinning holes, the constraint equations
take a simple hierarchical form which is amenable to direct numerical
integration. The feasibility of this approach is demonstrated by solving
analytically the problem of initial data in a perturbed Schwarzschild geometry.Comment: 13 pages, RevTeX forma
Viral forensic genomics reveals the relatedness of classic herpes simplex virus strains KOS, KOS63, and KOS79
Herpes simplex virus 1 (HSV-1) is a widespread global pathogen, of which the strain KOS is one of the most extensively studied. Previous sequence studies revealed that KOS does not cluster with other strains of North American geographic origin, but instead clustered with Asian strains. We sequenced a historical isolate of the original KOS strain, called KOS63, along with a separately isolated strain attributed to the same source individual, termed KOS79. Genomic analyses revealed that KOS63 closely resembled other recently sequenced isolates of KOS and was of Asian origin, but that KOS79 was a genetically unrelated strain that clustered in genetic distance analyses with HSV-1 strains of North American/European origin. These data suggest that the human source of KOS63 and KOS79 could have been infected with two genetically unrelated strains of disparate geographic origins. A PCR RFLP test was developed for rapid identification of these strains
The collision of boosted black holes: second order close limit calculations
We study the head-on collision of black holes starting from unsymmetrized,
Brill--Lindquist type data for black holes with non-vanishing initial linear
momentum. Evolution of the initial data is carried out with the ``close limit
approximation,'' in which small initial separation and momentum are assumed,
and second-order perturbation theory is used. We find agreement that is
remarkably good, and that in some ways improves with increasing momentum. This
work extends a previous study in which second order perturbation calculations
were used for momentarily stationary initial data, and another study in which
linearized perturbation theory was used for initially moving holes. In addition
to supplying answers about the collisions, the present work has revealed
several subtle points about the use of higher order perturbation theory, points
that did not arise in the previous studies. These points include issues of
normalization, and of comparison with numerical simulations, and will be
important to subsequent applications of approximation methods for collisions.Comment: 20 pages, RevTeX, 6 figures included with psfi
- …