21 research outputs found

    Spatio-temporal distribution of Erysiphe necator genetic groups and their relationship with disease levels in vineyards

    Full text link
    International audienceThe discovery of genetically distinct Erysiphe necator groups (A or B), with high phenotypic similarities, raises important questions about their coexistence. For plant pathogens, niche partitioning, allowing the coexistence on the same host (i.e. the same resource), might result from separation in space and/or time. We used a landscape genetic approach to study the geographic distribution of genetic groups of E. necator (distinguished by a SNP in the ÎČ-tubulin gene) at the spatial scale of the Languedoc-Roussillon region (southern France) and to assess the temporal succession of groups along the course of the 2007 epidemic. Spatial distribution revealed a high heterogeneity between vineyards: from 100% B to 100% A, with 62% and 38% of vineyards showing a majority of A and B isolates, respectively. Temporal isolation seems to be the major mechanism in the coexistence of the two genetic groups: all isolates collected towards the end of the epidemic belonged to group B, whatever the initial frequency of genetic groups. Our results confirm that both A or B isolates can lead to flag-shoot symptoms, and showed that group A isolates tend to disappear during the course of the epidemic, whereas group B isolates may be active during the entire epidemic and involved in further production of cleistothecia, when recombination takes place. For the first time, the relationship between the frequency of genetic groups and disease levels on leaves and clusters at the end of the epidemic was evaluated. We showed a strong relationship between the disease severity and the genetic composition of E. necator populations: the damage was more important when the epidemic was initiated by B isolates

    Twelve polymorphic expressed sequence tags-derived markers for Plasmopara halstedii, the causal agent of sunflower downy mildew

    Full text link
    Twelve expressed sequence tags-derived markers were isolated from Plasmopara halstedii (Oomycetes), the causal agent of sunflower downy mildew. A total of 25 single nucleotide polymorphisms and five indels were detected by single-strand conformation polymorphism analysis and developed for high-throughput genotyping of 32 isolates. There was a high level of genetic diversity (HE = 0.484). Observed heterozygosity ranged from 0 to 0.143 indicating that P. halstedii is probably a selfing species. These markers were also useful in detecting significant genetic variations among French populations (FST = 0.193) and between French and Russian populations (FST = 0.23). Cross-amplification tests on three closely related species indicated that no loci amplified in other Oomycete species

    Development of new oomycete taxon-specific mitochondrial cytochrome b region primers for use in phylogenetic and phylogeographic studies

    Full text link
    International audienceHere, we describe the development of an oomycete-specific primer pair for amplification of the cytochrome b region in plant pathogenic species that span the order Peronosporales (Phytophthora spp., downy mildews). Because of the high number of variable sites at both inter- and intra-specific levels this marker provides a powerful tool for population genetics and phylogenetic studies in this taxa. We also demonstrate its potential compared with other oomycete-specific mitochondrial markers currently available

    Data from: Genetic signature of a range expansion and leap-frog event after the recent invasion of Europe by the grapevine downy mildew pathogen Plasmopara viticola

    Full text link
    Biologic invasions can have important ecological, economic and social consequences, particularly when they involve the introduction and spread of plant invasive pathogens, as they can threaten natural ecosystems and jeopardize the production of human food. Examples include the grapevine downy mildew, caused by the oomycete Plasmopara viticola, an invasive species native to North America, introduced into Europe in the 1870s. We investigated the introduction and spread of this invasive pathogen, by analysing its genetic structure and diversity in a large sample from European vineyards. Populations of P. viticola across Europe displayed little genetic diversity, consistent with the occurrence of a bottleneck at the time of introduction. Bayesian coalescent analyses revealed a clear population expansion signal in the genetic data. We detected a weak, but significant, continental-wide population structure, with two geographically and genetically distinct clusters in Western and Eastern European vineyards. Approximate Bayesian computation, analyses of clines of genetic diversity and of isolation-by-distance patterns provided evidence for a wave of colonization moving in an easterly direction across Europe. This is consistent with historical reports, first mentioning the introduction of the disease in Bordeaux vineyards (France) and sub-sequently documenting its rapid spread across Europe. This initial introduction in the west was probably followed by a ‘leap-frog’ event into Eastern Europe, leading to the formation of the two genetic clusters we detected. This study shows that recent population genetics methods within the Bayesian and coalescence frameworks are extremely powerful for increasing our understanding of pathogen population dynamics and invasion histories

    At Least Two Origins of Fungicide Resistance in Grapevine Downy Mildew Populations▿

    Full text link
    Quinone outside inhibiting (QoI) fungicides represent one of the most widely used groups of fungicides used to control agriculturally important fungal pathogens. They inhibit the cytochrome bc1 complex of mitochondrial respiration. Soon after their introduction onto the market in 1996, QoI fungicide-resistant isolates were detected in field plant pathogen populations of a large range of species. However, there is still little understanding of the processes driving the development of QoI fungicide resistance in plant pathogens. In particular, it is unknown whether fungicide resistance occurs independently in isolated populations or if it appears once and then spreads globally by migration. Here, we provide the first case study of the evolutionary processes that lead to the emergence of QoI fungicide resistance in the plant pathogen Plasmopara viticola. Sequence analysis of the complete cytochrome b gene showed that all resistant isolates carried a mutation resulting in the replacement of glycine by alanine at codon 143 (G143A). Phylogenetic analysis of a large mitochondrial DNA fragment including the cytochrome b gene (2,281 bp) across a wide range of European P. viticola isolates allowed the detection of four major haplotypes belonging to two distinct clades, each of which contains a different QoI fungicide resistance allele. This is the first demonstration that a selected substitution conferring resistance to a fungicide has occurred several times in a plant-pathogen system. Finally, a high population structure was found when the frequency of QoI fungicide resistance haplotypes was assessed in 17 French vineyards, indicating that pathogen populations might be under strong directional selection for local adaptation to fungicide pressure
    corecore