54 research outputs found

    Seagrass meadows globally as a coupled social–ecological system: Implications for human wellbeing

    Get PDF
    Seagrass ecosystems are diminishing worldwide and repeated studies confirm a lack of appreciation for the value of these systems. In order to highlight their value we provide the first discussion of seagrass meadows as a coupled social–ecological system on a global scale. We consider the impact of a declining resource on people, including those for whom seagrass meadows are utilised for income generation and a source of food security through fisheries support. Case studies from across the globe are used to demonstrate the intricate relationship between seagrass meadows and people that highlight the multi-functional role of seagrasses in human wellbeing. While each case underscores unique issues, these examples simultaneously reveal social–ecological coupling that transcends cultural and geographical boundaries. We conclude that understanding seagrass meadows as a coupled social–ecological system is crucial in carving pathways for social and ecological resilience in light of current patterns of local to global environmental change

    Rickettsia parkeri in Brazil

    Get PDF
    We report finding Rickettsia parkeri in Brazil in 9.7% of Amblyomma triste ticks examined. An R. parkeri isolate was successfully established in Vero cell culture. Molecular characterization of the agent was performed by DNA sequencing of portions of the rickettsial genes gltA, htrA, ompA, and ompB

    Rocky Mountain Spotted Fever in Dogs, Brazil

    Get PDF
    Clinical illness caused by Rickettsia rickettsii in dogs has been reported solely in the United States. We report 2 natural clinical cases of Rocky Mountain spotted fever in dogs in Brazil. Each case was confirmed by seroconversion and molecular analysis and resolved after doxycycline therapy

    Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM

    Get PDF
    Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research

    Macular hole formation, progression, and surgical repair: case series of serial optical coherence tomography and time lapse morphing video study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To use a new medium to dynamically visualize serial optical coherence tomography (OCT) scans in order to illustrate and elucidate the pathogenesis of idiopathic macular hole formation, progression, and surgical closure.</p> <p>Case Presentations</p> <p>Two patients at the onset of symptoms with early stage macular holes and one patient following repair were followed with serial OCTs. Images centered at the fovea and at the same orientation were digitally exported and morphed into an Audiovisual Interleaving (avi) movie format. Morphing videos from serial OCTs allowed the OCTs to be viewed dynamically. The videos supported anterior-posterior vitreofoveal traction as the initial event in macular hole formation. Progression of the macular hole occurred with increased cystic thickening of the fovea without evidence of further vitreofoveal traction. During cyst formation, the macular hole enlarged as the edges of the hole became elevated from the retinal pigment epithelium (RPE) with an increase in subretinal fluid. Surgical repair of a macular hole revealed initial closure of the macular hole with subsequent reabsorption of the sub-retinal fluid and restoration of the foveal contour.</p> <p>Conclusions</p> <p>Morphing videos from serial OCTs are a useful tool and helped illustrate and support anterior-posterior vitreofoveal traction with subsequent retinal hydration as the pathogenesis of idiopathic macular holes.</p

    Regulation of Kainate Receptor Subunit mRNA by Stress and Corticosteroids in the Rat Hippocampus

    Get PDF
    Kainate receptors are a class of ionotropic glutamate receptors that have a role in the modulation of glutamate release and synaptic plasticity in the hippocampal formation. Previous studies have implicated corticosteroids in the regulation of these receptors and recent clinical work has shown that polymorphisms in kainate receptor subunit genes are associated with susceptibility to major depression and response to anti-depressant treatment. In the present study we sought to examine the effects of chronic stress and corticosteroid treatments upon the expression of the mRNA of kainate receptor subunits GluR5-7 and KA1-2. Our results show that, after 7 days, adrenalectomy results in increased expression of hippocampal KA1, GluR6 and GluR7 mRNAs, an effect which is reversed by treatment with corticosterone in the case of KA1 and GluR7 and by aldosterone treatment in the case of GluR6. 21 days of chronic restraint stress (CRS) elevated the expression of the KA1 subunit, but had no effect on the expression of the other subunits. Similarly, 21 days of treatment with a moderate dose of corticosterone also increased KA1 mRNA in the dentate gyrus, whereas a high corticosterone dose has no effect. Our results suggest an interaction between hippocampal kainate receptor composition and the hypothalamic-pituitary-adrenal (HPA) axis and show a selective chronic stress induced modulation of the KA1 subunit in the dentate gyrus and CA3 that has implications for stress-induced adaptive structural plasticity

    This work was supported by The Department of the Interior Alaska Climate Adaptation Science Center, which is managed by the USGS National Climate Adaptation Science Center.

    Get PDF
    53 pages : color illustrations, color maps ; 28 cmThis report is designed as a living document to inform the community, decision makers, and academics and to serve as a learning and teaching tool. The nine key messages summarized on pages 6 and 7 are intended for use as a quick reference. Unique for this type of report, these key messages highlight actions by Juneau's civil society, including local nonprofit organizations.We thank the City and Borough of Juneau (CBJ) for its support in bringing this vital information on climate change to the Juneau community and to others. Thanks especially to all the co-authors and other contributors. The inclusion of such a diverse array of material, including local knowledge, was made possible by the many elders, scientists, and local experts who contributed their time and expertise. The report is online at acrc.alaska.edu/ juneau-climate-report. It is an honor to be the lead editor and project manager for this critical effort. We have a chance to save our world from the most extreme effects of climate change. Let us take it. Gunalchéesh, sincerely, James E. Powell (Jim), PhD, Alaska Coastal Rainforest Center, UASWelcome / Thomas F. Thornton -- Juneau's climate report: History and background / Bruce Botelho -- Using this report -- Acknowledgements / James E. Powell -- A regional Indigenous perspective on adaptation: The Central Council of Tlingit & Haida Indian Tribes of Alaska's Climate Change Adaptation Plan / Raymond Paddock -- Nine key messages -- What we're experiencing: Atmospheric, marine, terrestrial, and ecological effects. Climate. Setting and seasons / Tom Ainsworth -- More precipitation / Rick Thoman -- Higher temperatures / Rich Thoman -- Less snowfall / Eran Hood -- Ocean. Surface uplift and sea level rise / Eran Hood -- Extensive effects of a warming ocean / Heidi Pearson -- Increasing ocean acidification / Robert Foy -- Land. More landslides / Sonia Nagorski & Aaron Jacobs -- Mendenhall Glacier continues to retreat / Jason Amundson -- Tongass Forest impacts and carbon / Dave D'Amore -- Animals. Terrestrial vertebrates in A¿¿ak'w & T'aak¿łu Aani¿¿ / Richard Carstensen -- Three animals as indicators of change / Richard Carstensen -- Insects / Bob Armstrong -- What we're doing: Community response. Upgrading ifrastructure and mitigation / Katie Koester -- Upgrading utilities and other energy consumers / Alec Mesdag -- Growing demand for hydropower / Duff Mitchell -- Leading a shift in transportation / Duff Mitchell -- Maintaining mental health through community and recreation / Linda Kruger & Kevin Maier -- Food security / Darren Snyder & Jim Powell -- Large cruise ship air emissions / Jim Powell -- Tourists' views on climate change mitigation / Jim Powell -- Lowering greenhouse gas emissions / Jim Powell & Peggy Wilcox -- Residents taking action / Andy Romanoff & Jim Powell -- Summary and Recommendations -- References -- Graphics and data sources -- Appendix: Juneau nonprofit climate change organization
    corecore