82 research outputs found
Microsatellite Instability and its Significance to Hereditary and Sporadic Cancer
Up to one million people within the United States may have Lynch syndrome (LS), but only 10% have been diagnosed. Early identification of these individuals is critical because they are predisposed to the development of colorectal and several other cancers at a relatively young age. Individuals with LS carry a germline mutation in one of four DNA mismatch repair genes, which leads to hypermutability in simple repetitive DNA sequences. This hallmark molecular phenotype called microsatellite instability (MSI) is now widely used to screen individuals needing germline sequencing to confirm diagnosis of LS. Standardized markers for MSI testing and other improvements in methodology have greatly improved the accuracy and cost-effectiveness of MSI testing. The current trend toward universal MSI screening of all colorectal and endometrial cancers will save lives by identifying LS prior to the development of deadly cancer. New technologies for MSI detection, such as next generation sequencing, open the possibility of a single test for LS that determines both tumor MSI status and germline mutations. Moreover, MSI detection is poised to take on an even greater role in prediction of responses to the new immunotherapies targeted at MSI-positive tumors
Growth Rates and Histopathological Outcomes of Small (6-9 MM) Colorectal Polyps Based on CT Colonography Surveillance and Endoscopic Removal
BACKGROUND AND AIMS: The natural history of small polyps is not well established and rests on limited evidence from barium enema studies decades ago. Patients with one or two small polyps (6-9 mm) at screening CT colonography (CTC) are offered CTC surveillance at 3 years but may elect immediate colonoscopy. This practice allows direct observation of the growth of subcentimetre polyps, with histopathological correlation in patients undergoing subsequent polypectomy.
DESIGN: Of 11 165 asymptomatic patients screened by CTC over a period of 16.4 years, 1067 had one or two 6-9 mm polyps detected (with no polyps ≥10 mm). Of these, 314 (mean age, 57.4 years; M:F, 141:173; 375 total polyps) elected immediate colonoscopic polypectomy, and 382 (mean age 57.0 years; M:F, 217:165; 481 total polyps) elected CTC surveillance over a mean of 4.7 years. Volumetric polyp growth was analysed, with histopathological correlation for resected polyps. Polyp growth and regression were defined as volume change of ±20% per year, with rapid growth defined as +100% per year (annual volume doubling). Regression analysis was performed to evaluate predictors of advanced histology, defined as the presence of cancer, high-grade dysplasia (HGD) or villous components.
RESULTS: Of the 314 patients who underwent immediate polypectomy, 67.8% (213/314) harboured adenomas, 2.2% (7/314) with advanced histology; no polyps contained cancer or HGD. Of 382 patients who underwent CTC surveillance, 24.9% (95/382) had polyps that grew, while 62.0% (237/382) remained stable and 13.1% (50/382) regressed in size. Of the 58.6% (224/382) CTC surveillance patients who ultimately underwent colonoscopic resection, 87.1% (195/224) harboured adenomas, 12.9% (29/224) with advanced histology. Of CTC surveillance patients with growing polyps who underwent resection, 23.2% (19/82) harboured advanced histology vs 7.0% (10/142) with stable or regressing polyps (OR: 4.0; p
CONCLUSION: Small 6-9 mm polyps present overall low risk to patients, with polyp growth strongly associated with higher risk lesions. Most patients (75%) with small 6-9 mm polyps will see polyp stability or regression, with advanced histology seen in only 7%. The minority of patients (25%) with small polyps that do grow have a 3-fold increased risk of advanced histology
Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer
Colon tumors from four independent mouse models and 100 human colorectal cancers all exhibited striking recapitulation of embryonic colon gene expression from embryonic days 13.5-18.5
Transcriptional recapitulation and subversion of embryonic colon development by mouse colon tumor models and human colon cancer
Abstract Background The expression of carcino-embryonic antigen by colorectal cancer is an example of oncogenic activation of embryonic gene expression. Hypothesizing that oncogenesis-recapitulating-ontogenesis may represent a broad programmatic commitment, we compared gene expression patterns of human colorectal cancers (CRCs) and mouse colon tumor models to those of mouse colon development embryonic days 13.5-18.5. Results We report here that 39 colon tumors from four independent mouse models and 100 human CRCs encompassing all clinical stages shared a striking recapitulation of embryonic colon gene expression. Compared to normal adult colon, all mouse and human tumors over-expressed a large cluster of genes highly enriched for functional association to the control of cell cycle progression, proliferation, and migration, including those encoding MYC, AKT2, PLK1 and SPARC. Mouse tumors positive for nuclear β-catenin shifted the shared embryonic pattern to that of early development. Human and mouse tumors differed from normal embryonic colon by their loss of expression modules enriched for tumor suppressors (EDNRB, HSPE, KIT and LSP1). Human CRC adenocarcinomas lost an additional suppressor module (IGFBP4, MAP4K1, PDGFRA, STAB1 and WNT4). Many human tumor samples also gained expression of a coordinately regulated module associated with advanced malignancy (ABCC1, FOXO3A, LIF, PIK3R1, PRNP, TNC, TIMP3 and VEGF). Conclusion Cross-species, developmental, and multi-model gene expression patterning comparisons provide an integrated and versatile framework for definition of transcriptional programs associated with oncogenesis. This approach also provides a general method for identifying pattern-specific biomarkers and therapeutic targets. This delineation and categorization of developmental and non-developmental activator and suppressor gene modules can thus facilitate the formulation of sophisticated hypotheses to evaluate potential synergistic effects of targeting within- and between-modules for next-generation combinatorial therapeutics and improved mouse models
Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings
Considerable interest has been shown in the ability of caloric restriction (CR) to improve multiple parameters of health and to extend lifespan. CR is the reduction of caloric intake - typically by 20 - 40% of ad libitum consumption - while maintaining adequate nutrient intake. Several alternatives to CR exist. CR combined with exercise (CE) consists of both decreased caloric intake and increased caloric expenditure. Alternate-day fasting (ADF) consists of two interchanging days; one day, subjects may consume food ad libitum (sometimes equaling twice the normal intake); on the other day, food is reduced or withheld altogether. Dietary restriction (DR) - restriction of one or more components of intake (typically macronutrients) with minimal to no reduction in total caloric intake - is another alternative to CR. Many religions incorporate one or more forms of food restriction. The following religious fasting periods are featured in this review: 1) Islamic Ramadan; 2) the three principal fasting periods of Greek Orthodox Christianity (Nativity, Lent, and the Assumption); and 3) the Biblical-based Daniel Fast. This review provides a summary of the current state of knowledge related to CR and DR. A specific section is provided that illustrates related work pertaining to religious forms of food restriction. Where available, studies involving both humans and animals are presented. The review includes suggestions for future research pertaining to the topics of discussion
Biometrics DOI: 10.1111/j.1541-0420.2006.00522.x A Statistical Test of the Hypothesis that Polyclonal Intestinal Tumors Arise by Random Collision of Initiated Clones
Summary. The random collision hypothesis is a mathematical idealization of intestinal tumor formation that can account for the polyclonal origin of tumors without requiring a mechanistic description of clonal interaction. Using data from recent polyclonality studies in mice, we develop a statistical procedure to test the random collision hypothesis. Elements from stochastic geometry and approximations due to Armitage (1949, Biometrika 36, 257–266) support a statistical model of tumor count data. Bayesian analysis yields the posterior distribution of the number of heterotypic tumors, from which p-values are computed to test random collision
- …