17 research outputs found

    Associations between Season and Gametocyte Dynamics in Chronic Plasmodium falciparum Infections

    Get PDF
    Introduction: In a markedly seasonal malaria setting, the transition from the transmission-free dry season to the transmission season depends on the resurgence of the mosquito population following the start of annual rains. The sudden onset of malaria outbreaks at the start of the transmission season suggests that parasites persist during the dry season and respond to either the reappearance of vectors, or correlated events, by increasing the production of transmission stages. Here, we investigate whether Plasmodium falciparum gametocyte density and the correlation between gametocyte density and parasite density show seasonal variation in chronic (largely asymptomatic) carriers in eastern Sudan. Materials and Methods: We recruited and treated 123 malaria patients in the transmission season 2001. We then followed them monthly during four distinct consecutive epidemiological seasons: transmission season 1, transmission-free season, pre-clinical period, and transmission season 2. In samples collected from 25 participants who fulfilled the selection criteria of the current analysis, we used quantitative PCR (qPCR) and RT-qPCR to quantify parasite and gametocyte densities, respectively. Results and Discussion: We observed a significant increase in gametocyte density and a significantly steeper positive correlation between gametocyte density and total parasite density during the pre-clinical period compared to the preceding transmission-free season. However, there was no corresponding increase in the density or prevalence of total parasites or gametocyte prevalence. The increase in gametocyte production during the pre-clinical period supports the hypothesis that P. falciparum may respond to environmental cues, such as mosquito biting, to modulate its transmission strategy. Thus, seasonal changes may be important to ignite transmission in unstable-malaria settings

    Direct effects of fatty acids and other charged lipids on ion channel activity in smooth muscle cells

    No full text
    A variety of fatty acids increase the activity of certain types of K+ channels. This effect is not dependent on the three enzymatic pathways that convert arachidonic acid to various bioactive oxygenated metabolites. One type of K+ channel in toad stomach smooth muscle cell membranes in activated by fatty acids and other single chain lipids which possess both a negatively charged head group and a sufficiently hydrophobic acyl chain. Neutral lipids have no effect on K+ channel activity, while positively charged lipids with a sufficiently hydrophobic acyl chain suppress channel activity. Acyl Coenzyme A\u27s, which do not flip across the bilayer, act only from the cytosolic surface of the membrane, suggesting that the binding site for channel activation is also located there. This fatty acid-activated channel is also activated by membrane stretch. Moreover, this mechanical response is either mediated or modulated by fatty acids. Thus, fatty acids and other charged single chain lipids may comprise another class of first or second messenger molecules that target ion channels

    Functional Genomics of Chlorine-induced Acute Lung Injury in Mice

    No full text
    Acute lung injury can be induced indirectly (e.g., sepsis) or directly (e.g., chlorine inhalation). Because treatment is still limited to supportive measures, mortality remains high (∼74,500 deaths/yr). In the past, accidental (railroad derailments) and intentional (Iraq terrorism) chlorine exposures have led to deaths and hospitalizations from acute lung injury. To better understand the molecular events controlling chlorine-induced acute lung injury, we have developed a functional genomics approach using inbred mice strains. Various mouse strains were exposed to chlorine (45 ppm × 24 h) and survival was monitored. The most divergent strains varied by more than threefold in mean survival time, supporting the likelihood of an underlying genetic basis of susceptibility. These divergent strains are excellent models for additional genetic analysis to identify critical candidate genes controlling chlorine-induced acute lung injury. Gene-targeted mice then could be used to test the functional significance of susceptibility candidate genes, which could be valuable in revealing novel insights into the biology of acute lung injury

    Characterization, Distribution, and Expression of Novel Genes among Eight Clinical Isolates of Streptococcus pneumoniae

    No full text
    Eight low-passage-number Streptococcus pneumoniae clinical isolates, each of a different serotype and a different multilocus sequence type, were obtained from pediatric participants in a pneumococcal vaccine trial. Comparative genomic analyses were performed with these strains and two S. pneumoniae reference strains. Individual genomic libraries were constructed for each of the eight clinical isolates, with an average insert size of ∼1 kb. A total of 73,728 clones were picked for arraying, providing more than four times genomic coverage per strain. A subset of 4,793 clones were sequenced, for which homology searches revealed that 750 (15.6%) of the sequences were unique with respect to the TIGR4 reference genome and 263 (5.5%) clones were unrelated to any available streptococcal sequence. Hypothetical translations of the open reading frames identified within these novel sequences showed homologies to a variety of proteins, including bacterial virulence factors not previously identified in S. pneumoniae. The distribution and expression patterns of 58 of these novel sequences among the eight clinical isolates were analyzed by PCR- and reverse transcriptase PCR-based analyses, respectively. These unique sequences were nonuniformly distributed among the eight isolates, and transcription of these genes in planktonic cultures was detected in 81% (172/212) of their genic occurrences. All 58 novel sequences were transcribed in one or more of the clinical strains, suggesting that they all correspond to functional genes. Sixty-five percent (38/58) of these sequences were found in 50% or less of the clinical strains, indicating a significant degree of genomic plasticity among natural isolates

    Postthymic expansion in human CD4 naive T cells defined by expression of functional high-affinity IL-2 receptors

    No full text
    As the thymus involutes with age, the maintenance of peripheral naive T cells in humans becomes strongly dependent on peripheral cell division. However, mechanisms that orchestrate homeostatic division remain unclear. In this study we present evidence that the frequency of naive CD4 T cells that express CD25 (IL-2 receptor α-chain) increases with age on subsets of both CD31(+) and CD31(−) naive CD4 T cells. Analyses of TCR excision circles from sorted subsets indicate that CD25(+) naive CD4 T cells have undergone more rounds of homeostatic proliferation than their CD25(−) counterparts in both the CD31(+) and CD31(−) subsets, indicating that CD25 is a marker of naive CD4 T cells that have preferentially responded to survival signals from self-Ags or cytokines. CD25 expression on CD25(−) naive CD4 T cells can be induced by IL-7 in vitro in the absence of TCR activation. Although CD25(+) naive T cells respond to lower concentrations of IL-2 as compared with their CD25(−) counterparts, IL-2 responsiveness is further increased in CD31(−) naive T cells by their expression of the signaling IL-2 receptor β-chain CD122, forming with common γ-chain functional high-affinity IL-2 receptors. CD25 plays a role during activation: CD25(+) naive T cells stimulated in an APC-dependent manner were shown to produce increased levels of IL-2 as compared with their CD25(−) counterparts. This study establishes CD25(+) naive CD4 T cells, which are further delineated by CD31 expression, as a major functionally distinct immune cell subset in humans that warrants further characterization in health and disease

    Extensive Genomic Plasticity in Pseudomonas aeruginosa Revealed by Identification and Distribution Studies of Novel Genes among Clinical Isolates

    No full text
    The distributed genome hypothesis (DGH) states that each strain within a bacterial species receives a unique distribution of genes from a population-based supragenome that is many times larger than the genome of any given strain. The observations that natural infecting populations are often polyclonal and that most chronic bacterial pathogens have highly developed mechanisms for horizontal gene transfer suggested the DGH and provided the means and the mechanisms to explain how chronic infections persist in the face of a mammalian host's adaptive defense mechanisms. Having previously established the validity of the DGH for obligate pathogens, we wished to evaluate its applicability to an opportunistic bacterial pathogen. This was accomplished by construction and analysis of a highly redundant pooled genomic library containing approximately 216,000 functional clones that was constructed from 12 low-passage clinical isolates of Pseudomonas aeruginosa, 6 otorrheic isolates and 6 from other body sites. Sequence analysis of 3,214 randomly picked clones (mean insert size, ∼1.4 kb) from this library demonstrated that 348 (10.8%) of the clones were unique with respect to all genomic sequences of the P. aeruginosa prototype strain, PAO1. Hypothetical translations of the open reading frames within these unique sequences demonstrated protein homologies to a number of bacterial virulence factors and other proteins not previously identified in P. aeruginosa. PCR and reverse transcription-PCR-based assays were performed to analyze the distribution and expression patterns of a 70-open reading frame subset of these sequences among 11 of the clinical strains. These sequences were unevenly distributed among the clinical isolates, with nearly half (34/70) of the novel sequences being present in only one or two of the individual strains. Expression profiling revealed that a vast majority of these sequences are expressed, strongly suggesting they encode functional proteins
    corecore