213 research outputs found
Determining species tree topologies from clade probabilities under the coalescent
One approach to estimating a species tree from a collection of gene trees is
to first estimate probabilities of clades from the gene trees, and then to
construct the species tree from the estimated clade probabilities. While a
greedy consensus algorithm, which consecutively accepts the most probable
clades compatible with previously accepted clades, can be used for this second
stage, this method is known to be statistically inconsistent under the
multispecies coalescent model. This raises the question of whether it is
theoretically possible to reconstruct the species tree from known probabilities
of clades on gene trees. We investigate clade probabilities arising from the
multispecies coalescent model, with an eye toward identifying features of the
species tree. Clades on gene trees with probability greater than 1/3 are shown
to reflect clades on the species tree, while those with smaller probabilities
may not. Linear invariants of clade probabilities are studied both
computationally and theoretically, with certain linear invariants giving
insight into the clade structure of the species tree. For species trees with
generic edge lengths, these invariants can be used to identify the species tree
topology. These theoretical results both confirm that clade probabilities
contain full information on the species tree topology and suggest future
directions of study for developing statistically consistent inference methods
from clade frequencies on gene trees.Comment: 25 pages, 2 figure
An Optimized Pentaplex PCR for Detecting DNA Mismatch Repair-Deficient Colorectal Cancers
Microsatellite instability (MSI) is used to screen colorectal cancers (CRC) for Lynch Syndrome, and to predict outcome and response to treatment. The current technique for measuring MSI requires DNA from normal and neoplastic tissues, and fails to identify tumors with specific DNA mismatch repair (MMR) defects. We tested a panel of five quasi-monomorphic mononucleotide repeat markers amplified in a single multiplex PCR reaction (pentaplex PCR) to detect MSI.We investigated a cohort of 213 CRC patients, comprised of 114 MMR-deficient and 99 MMR-proficient tumors. Immunohistochemical (IHC) analysis evaluated the expression of MLH1, MSH2, PMS2 and MSH6. MSI status was defined by differences in the quasi-monomorphic variation range (QMVR) from a pool of normal DNA samples, and measuring differences in allele lengths in tumor DNA.Amplification of 426 normal alleles allowed optimization of the QMVR at each marker, and eliminated the requirement for matched reference DNA to define MSI in each sample. Using ≥2/5 unstable markers as the criteria for MSI resulted in a sensitivity of 95.6% (95% CI = 90.1–98.1%) and a positive predictive value of 100% (95% CI = 96.6%–100%). Detection of MSH6-deficiency was limited using all techniques. Data analysis with a three-marker panel (BAT26, NR21 and NR27) was comparable in sensitivity (97.4%) and positive predictive value (96.5%) to the five marker panel. Both approaches were superior to the standard approach to measuring MSI.An optimized pentaplex (or triplex) PCR offers a facile, robust, very inexpensive, highly sensitive, and specific assay for the identification of MSI in CRC
Genome sequences of six Phytophthora species threatening forest ecosystems
AbstractThe Phytophthora genus comprises of some of the most destructive plant pathogens and attack a wide range of hosts including economically valuable tree species, both angiosperm and gymnosperm. Many known species of Phytophthora are invasive and have been introduced through nursery and agricultural trade. As part of a larger project aimed at utilizing genomic data for forest disease diagnostics, pathogen detection and monitoring (The TAIGA project: Tree Aggressors Identification using Genomic Approaches; http://taigaforesthealth.com/), we sequenced the genomes of six important Phytophthora species that are important invasive pathogens of trees and a serious threat to the international trade of forest products. This genomic data was used to develop highly sensitive and specific detection assays and for genome comparisons and to make evolutionary inferences and will be useful to the broader plant and tree health community. These WGS data have been deposited in the International Nucleotide Sequence Database Collaboration (DDBJ/ENA/GenBank) under the accession numbers AUPN01000000, AUVH01000000, AUWJ02000000, AUUF02000000, AWVV02000000 and AWVW02000000
Spatial Genetic Structure of a Symbiotic Beetle-Fungal System: Toward Multi-Taxa Integrated Landscape Genetics
Spatial patterns of genetic variation in interacting species can identify shared features that are important to gene flow and can elucidate co-evolutionary relationships. We assessed concordance in spatial genetic variation between the mountain pine beetle (Dendroctonus ponderosae) and one of its fungal symbionts, Grosmanniaclavigera, in western Canada using neutral genetic markers. We examined how spatial heterogeneity affects genetic variation within beetles and fungi and developed a novel integrated landscape genetics approach to assess reciprocal genetic influences between species using constrained ordination. We also compared landscape genetic models built using Euclidean distances based on allele frequencies to traditional pair-wise Fst. Both beetles and fungi exhibited moderate levels of genetic structure over the total study area, low levels of structure in the south, and more pronounced fungal structure in the north. Beetle genetic variation was associated with geographic location while that of the fungus was not. Pinevolume and climate explained beetle genetic variation in the northern region of recent outbreak expansion. Reciprocal genetic relationships were only detectedin the south where there has been alonger history of beetle infestations. The Euclidean distance and Fst-based analyses resulted in similar models in the north and over the entire study area, but differences between methods in the south suggest that genetic distances measures should be selected based on ecological and evolutionary contexts. The integrated landscape genetics framework we present is powerful, general, and can be applied to other systems to quantify the biotic and abiotic determinants of spatial genetic variation within and among taxa
Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum
Invasive alien species often have reduced genetic diversity and must adapt to new environments. Given the success of many invasions, this is sometimes called the genetic paradox of invasion. Phytophthora ramorum is invasive, limited to asexual reproduction within four lineages, and presumed clonal. It is responsible for sudden oak death in the United States, sudden larch death in Europe, and ramorum blight in North America and Europe. We sequenced the genomes of 107 isolates to determine how this pathogen can overcome the invasion paradox. Mitotic recombination (MR) associated with transposons and low gene density has generated runs of homozygosity (ROH) affecting 2,698 genes, resulting in novel genotypic diversity within the lineages. One ROH enriched in effectors was fixed in the NA1 lineage. An independent ROH affected the same scaffold in the EU1 lineage, suggesting an MR hot spot and a selection target. Differences in host infection between EU1 isolates with and without the ROH suggest that they may differ in aggressiveness. Non-core regions (not shared by all lineages) had signatures of accelerated evolution and were enriched in putative pathogenicity genes and transposons. There was a striking pattern of gene loss, including all effectors, in the non-core EU2 genome. Positive selection was observed in 8.0% of RxLR and 18.8% of Crinkler effector genes compared with 0.9% of the core eukaryotic gene set. We conclude that the P. ramorum lineages are diverging via a rapidly evolving non-core genome and that the invasive asexual lineages are not clonal, but display genotypic diversity caused by MR
Approaches to forecasting damage by invasive forest insects and pathogens : a cross-assessment
Non-native insects and pathogens pose major threats to forest ecosystems worldwide, greatly diminishing the ecosystem services trees provide. Given the high global diversity of arthropod and microbial species, their often unknown biological features or even identities, and their ease of accidental transport, there is an urgent need to better forecast the most likely species to cause damage. Several risk assessment approaches have been proposed or implemented to guide preventative measures. However, the underlying assumptions of each approach have rarely been explicitly identified or critically evaluated. We propose that evaluating the implicit assumptions, optimal usages, and advantages and limitations of each approach could help improve their combined utility. We consider four general categories: using prior pest status in native and previously invaded regions; evaluating statistical patterns of traits and gene sequences associated with a high impact; sentinel and other plantings to expose trees to insects and pathogens in native, nonnative, or experimental settings; and laboratory assays using detached plant parts or seedlings under controlled conditions. We evaluate how and under what conditions the assumptions of each approach are best met and propose methods for integrating multiple approaches to improve our forecasting ability and prevent losses from invasive pests.The University of Wisconsin–Madison’s College of Agricultural and Life Sciences, Graduate School; Vilas-Sorenson Professorship; OP RDE; the HOMED project which received funding from the European Union's Horizon 2020 research and innovation program; the Department of Science and Technolog; the National Research Foundation (NRF) Center of Excellence in Plant Health Biotechnology and the University of Pretoria.https://academic.oup.com/bioscienceForestry and Agricultural Biotechnology Institute (FABI)SDG-15:Life on lan
Comparative Genomic Analysis of 31 Phytophthora Genomes Reveals Genome Plasticity and Horizontal Gene Transfer
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts, including crops, trees, and ornamentals. We sequenced the genomes of 31 individual Phytophthora species and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, and plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus, we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine-learning approach to identify horizontally transferred genes with bacterial or fungal origin, we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthora spp. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in genus Phytophthora. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license
Chromosomal Instability in Near-Diploid Colorectal Cancer: A Link between Numbers and Structure
Chromosomal instability (CIN) plays a crucial role in tumor development and occurs mainly as the consequence of either missegregation of normal chromosomes (MSG) or structural rearrangement (SR). However, little is known about the respective chromosomal targets of MSG and SR and the way these processes combined within tumors to generate CIN. To address these questions, we karyotyped a consecutive series of 96 near-diploid colorectal cancers (CRCs) and distinguished chromosomal changes generated by either MSG or SR in tumor cells. Eighty-three tumors (86%) presented with chromosomal abnormalities that contained both MSGs and SRs to varying degrees whereas all 13 others (14%) showed normal karyotype. Using a maximum likelihood statistical method, chromosomes affected by MSG or SR and likely to represent changes that are selected for during tumor progression were found to be different and mostly mutually exclusive. MSGs and SRs were not randomly associated within tumors, delineating two major pathways of chromosome alterations that consisted of either chromosome gains by MSG or chromosomal losses by both MSG and SR. CRCs showing microsatellite instability (MSI) presented with either normal karyotype or chromosome gains whereas MSS (microsatellite stable) CRCs exhibited a combination of the two pathways. Taken together, these data provide new insights into the respective involvement of MSG and SR in near-diploid colorectal cancers, showing how these processes target distinct portions of the genome and result in specific patterns of chromosomal changes according to MSI status
Recommended from our members
Comparative genomic analysis of 31 Phytophthora genomes reveal genome plasticity and horizontal gene transfer
Phytophthora species are oomycete plant pathogens that cause great economic and ecological impacts. The Phytophthora genus includes over 180 known species, infecting a wide range of plant hosts including crops, trees, and ornamentals. We sequenced 31 individual Phytophthora species genomes and 24 individual transcriptomes to study genetic relationships across the genus. De novo genome assemblies revealed variation in genome sizes, numbers of predicted genes, and in repetitive element content across the Phytophthora genus. A genus-wide comparison evaluated orthologous groups of genes. Predicted effector gene counts varied across Phytophthora species by effector family, genome size, as well as plant host range. Predicted numbers of apoplastic effectors increased as the host range of Phytophthora species increased. Predicted numbers of cytoplasmic effectors also increased with host range but leveled off or decreased in Phytophthora species that have enormous host ranges. With extensive sequencing across the Phytophthora genus we now have the genomic resources to evaluate horizontal gene transfer events across the oomycetes. Using a machine learning approach to identify horizontally transferred genes with bacterial or fungal origin we identified 44 candidates over 36 Phytophthora species genomes. Phylogenetic reconstruction indicates that the transfers of most of these 44 candidates happened in parallel to major advances in the evolution of the oomycetes and Phytophthoras. We conclude that the 31 genomes presented here are essential for investigating genus-wide genomic associations in Phytophthora
Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum : new insights into how these fungal pathogens interact with their host plants
DATA AVAILABILITY STATEMENT : Data sharing is not applicable to this article as no new data were
created or analysed.Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with
similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum
is a pathogen of pine trees. In 2012, the first genome sequences of these
pathogens were published, with F. fulva and D. septosporum having highly fragmented
and near-complete
assemblies, respectively. Since then, significant advances have
been made in unravelling their genome architectures. For instance, the genome of
F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with
the 14 chromosomes of D. septosporum, suggesting these pathogens are even more
closely related than originally thought. Considerable advances have also been made
in the identification and functional characterization of virulence factors (e.g., effector
proteins and secondary metabolites) from these pathogens, thereby providing new
insights into how they promote host colonization or activate plant defence responses.
For example, it has now been established that effector proteins from both F. fulva
and D. septosporum interact with cell-surface
immune receptors and co-receptors
to
activate the plant immune system. Progress has also been made in understanding
how F. fulva and D. septosporum have evolved with their host plants, whilst intensive
research into pandemics of Dothistroma needle blight in the Northern Hemisphere
has shed light on the origins, migration, and genetic diversity of the global D. septosporum
population. In this review, we specifically summarize advances made in our
understanding of the F. fulva–tomato
and D. septosporum–pine
pathosystems over the
last 10 years.https://bsppjournals.onlinelibrary.wiley.com/journal/13643703am2024BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologySDG-02:Zero HungerSDG-15:Life on lan
- …