519 research outputs found
Exchange of coordinated solvent during crystallisation of a metal-organic framework observed by in situ high energy X-ray diffraction
Using time-resolved monochromatic high energy X-ray diffraction, we present an in situ study of the solvothermal crystallisation of a new MOF [Yb2(BDC)3(DMF)2]⋅H2O (BDC=benzene-1,4-dicarboxylate and DMF=N,N-dimethylformamide) under solvothermal conditions, from mixed water/DMF solvent. Analysis of high resolution powder patterns obtained reveals an evolution of lattice parameters and electron density during the crystallisation process and Rietveld analysis shows that this is due to a gradual topochemical replacement of coordinated solvent molecules. The water initially coordinated to Yb3+ is replaced by DMF as the reaction progresses
Dynamic evolution of megasatellites in yeasts
Megasatellites are a new family of long tandem repeats, recently discovered in the yeast Candida glabrata. Compared to shorter tandem repeats, such as minisatellites, megasatellite motifs range in size from 135 to more than 300 bp, and allow calculation of evolutionary distances between individual motifs. Using divergence based on nucleotide substitutions among similar motifs, we determined the smallest distance between two motifs, allowing their subsequent clustering. Motifs belonging to the same cluster are recurrently found in different megasatellites located on different chromosomes, showing transfer of genetic information between megasatellites. In comparison, evolution of the few similar tandem repeats in Saccharomyces cerevisiae FLO genes mainly involves subtelomeric homologous recombination. We estimated selective constraints acting on megasatellite motifs and their host genes, and found that motifs are under strong purifying selection. Surprisingly, motifs inserted within pseudogenes are also under purifying selection, whereas the pseudogenes themselves evolve neutrally. We propose that megasatellite motifs propagate by a combination of three different molecular mechanisms: (i) gene duplication, (ii) ectopic homologous recombination and (iii) transfer of motifs from one megasatellite to another one. These mechanisms actively cooperate to create new megasatellites, that may play an important role in the adaptation of Candida glabrata to its human host
Intestinal bacterial communities of trypanosome-infected and uninfected Glossina palpalis palpalis from three human African trypanomiasis foci in Cameroon
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status
Metal-organic frameworks from divalent metals and 1,4-benzenedicarboxylate with bidentate pyridine-N-oxide co-ligands
Two Co2+ metal-organic framework materials, constructed from a combination of 1,4-benzenedicarboxylate (BDC) and either 2,2′-dipyridyl-N-oxide (DPNO) or 2,2′-dipyridyl-N,N′-dioxide (DPNDO), are synthesized under solvothermal reaction conditions, and their structures solved by single crystal X-ray diffraction. Both have three-dimensional structures that contain octahedral Co2+ centers with μ2-(η2)-BDC, and bidentate DPNO or DPNDO coligands that bridge pairs of metal centers but do not contribute toward the overall connectivity of the framework. Co3(BDC)3(DPNO)2 contains trimers of trans corner-shared Co-centered octahedra with one type of bridging BDC ligand forming terminal edges of the trimers, bridging to neighboring trimer units, and a second type, bridging pairs of metals and also connecting neighboring trimers. Co2(BDC)2(DPNDO) is constructed from one-dimensional inorganic chains consisting of cis- and trans-corner shared Co2+-centered octahedra. The DPNDO ligand is bis-bidentate, forming the edges of one type of octahedron and the trans corners of the second type, with the coordination for both octahedra completed by bridging BDC linkers, which in turn connect the inorganic chains to yield a three-dimensional structure. Thermogravimetric analysis shows both materials contain trapped solvent, and while Co3(BDC)3(DPNO)2 is unstable with respect to solvent loss, Co2(BDC)2(DPNDO), and its magnesium analogue, can be desolvated to yield permanently porous materials that show thermal stability up to 300 °C. For Co2(BDC)2(DPNDO), gas adsorption studies show permanent microporosity with moderate uptake of small gas molecules (N2, CO2, CH4, and C2H6), supported by Grand Canonical Monte Carlo calculations based on the assumption of rigid crystal structures, while gravimetric analysis shows rapid and reversible methanol adsorption at ambient pressure for both the Co and Mg analogues of the framework.</p
Improvements to services at the European Nucleotide Archive
The European Nucleotide Archive (ENA; http://www.ebi.ac.uk/ena) is Europe’s primary nucleotide sequence archival resource, safeguarding open nucleotide data access, engaging in worldwide collaborative data exchange and integrating with the scientific publication process. ENA has made significant contributions to the collaborative nucleotide archival arena as an active proponent of extending the traditional collaboration to cover capillary and next-generation sequencing information. We have continued to co-develop data and metadata representation formats with our collaborators for both data exchange and public data dissemination. In addition to the DDBJ/EMBL/GenBank feature table format, we share metadata formats for capillary and next-generation sequencing traces and are using and contributing to the NCBI SRA Toolkit for the long-term storage of the next-generation sequence traces. During the course of 2009, ENA has significantly improved sequence submission, search and access functionalities provided at EMBL–EBI. In this article, we briefly describe the content and scope of our archive and introduce major improvements to our services
Ensconsin/Map7 promotes microtubule growth and centrosome separation in Drosophila neural stem cells.
International audienceThe mitotic spindle is crucial to achieve segregation of sister chromatids. To identify new mitotic spindle assembly regulators, we isolated 855 microtubule-associated proteins (MAPs) from Drosophila melanogaster mitotic or interphasic embryos. Using RNAi, we screened 96 poorly characterized genes in the Drosophila central nervous system to establish their possible role during spindle assembly. We found that Ensconsin/MAP7 mutant neuroblasts display shorter metaphase spindles, a defect caused by a reduced microtubule polymerization rate and enhanced by centrosome ablation. In agreement with a direct effect in regulating spindle length, Ensconsin overexpression triggered an increase in spindle length in S2 cells, whereas purified Ensconsin stimulated microtubule polymerization in vitro. Interestingly, ensc-null mutant flies also display defective centrosome separation and positioning during interphase, a phenotype also detected in kinesin-1 mutants. Collectively, our results suggest that Ensconsin cooperates with its binding partner Kinesin-1 during interphase to trigger centrosome separation. In addition, Ensconsin promotes microtubule polymerization during mitosis to control spindle length independent of Kinesin-1
‘Fourth places’: the Contemporary Public Settings for Informal Social Interaction among Strangers.
This paper introduces ‘fourth places’ as an additional category of informal social settings alongside ‘third places’ (Oldenburg 1989). Through extensive empirical fieldwork on where and how social interaction among strangers occurs in the public and semi-public spaces of a contemporary masterplanned neighbourhood, this paper reveals that ‘fourth places’ are closely related to ‘third places’ in terms of social and behavioural characteristics, involving a radical departure from the routines of home and work, inclusivity, and social comfort. However, the activities, users, locations and spatial conditions that support them are very different. They are characterized by ‘in-betweenness’ in terms of spaces, activities, time and management, as well as a great sense of publicness. This paper will demonstrate that the latter conditions are effective in breaking the ‘placelessness’ and ‘fortress’ designs of newly designed urban public spaces and that, by doing so, they make ‘fourth places’ sociologically more open in order to bring strangers together. The recognition of these findings problematizes well-established urban design theories and redefines several spatial concepts for designing public space. Ultimately, the findings also bring optimism to urban design practice, offering new insights into how to design more lively and inclusive public spaces. Keywords: ‘Fourth places’, Informal Public Social Settings, Social Interaction, Strangers, Public Space Design
The James Webb Space Telescope Mission
Twenty-six years ago a small committee report, building on earlier studies,
expounded a compelling and poetic vision for the future of astronomy, calling
for an infrared-optimized space telescope with an aperture of at least .
With the support of their governments in the US, Europe, and Canada, 20,000
people realized that vision as the James Webb Space Telescope. A
generation of astronomers will celebrate their accomplishments for the life of
the mission, potentially as long as 20 years, and beyond. This report and the
scientific discoveries that follow are extended thank-you notes to the 20,000
team members. The telescope is working perfectly, with much better image
quality than expected. In this and accompanying papers, we give a brief
history, describe the observatory, outline its objectives and current observing
program, and discuss the inventions and people who made it possible. We cite
detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space
Telescope Overview, 29 pages, 4 figure
Azimuthal anisotropy of charged jet production in root s(NN)=2.76 TeV Pb-Pb collisions
We present measurements of the azimuthal dependence of charged jet production in central and semi-central root s(NN) = 2.76 TeV Pb-Pb collisions with respect to the second harmonic event plane, quantified as nu(ch)(2) (jet). Jet finding is performed employing the anti-k(T) algorithm with a resolution parameter R = 0.2 using charged tracks from the ALICE tracking system. The contribution of the azimuthal anisotropy of the underlying event is taken into account event-by-event. The remaining (statistical) region-to-region fluctuations are removed on an ensemble basis by unfolding the jet spectra for different event plane orientations independently. Significant non-zero nu(ch)(2) (jet) is observed in semi-central collisions (30-50% centrality) for 20 <p(T)(ch) (jet) <90 GeV/c. The azimuthal dependence of the charged jet production is similar to the dependence observed for jets comprising both charged and neutral fragments, and compatible with measurements of the nu(2) of single charged particles at high p(T). Good agreement between the data and predictions from JEWEL, an event generator simulating parton shower evolution in the presence of a dense QCD medium, is found in semi-central collisions. (C) 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
- …