569 research outputs found

    Ownership-dependent mating tactics of minor males of the beetle Librodor japonicus (Nitidulidae) with intra-sexual dimorphism of mandibles

    Get PDF
    Intra-sexual dimorphism is found in the weapons of many male beetles. Different behavioral tactics to access females between major and minor males, which adopt fighting and alternative tactics, respectively, are thought to maintain the male dimorphism. In these species major males have enlarged weapons that they use in fights with rival males. Minor males also have small weapons in some of these species, and it is unclear why these males possess weapons. We examined the hypothesis that minor males might adopt a fighting tactic when their status was relatively high in comparison with that of other males (e.g., ownership of a territory). We observed the behavioral tactics of major and minor males of the beetle Librodor japonicus, whose males have a dimorphism of their mandibles. Major males fought for resources, whereas minor males adopted two status-dependent tactics, fighting and sneaking, to access females, depending on their ownership of a sap site. We suggest that ownership status-dependent mating tactics in minor males may maintain the intra-sexual dimorphism in this beetle.</p

    Female Sexual Polymorphism and Fecundity Consequences of Male Mating Harassment in the Wild

    Get PDF
    Genetic and phenotypic variation in female response towards male mating attempts has been found in several laboratory studies, demonstrating sexually antagonistic co-evolution driven by mating costs on female fitness. Theoretical models suggest that the type and degree of genetic variation in female resistance could affect the evolutionary outcome of sexually antagonistic mating interactions, resulting in either rapid development of reproductive isolation and speciation or genetic clustering and female sexual polymorphisms. However, evidence for genetic variation of this kind in natural populations of non-model organisms is very limited. Likewise, we lack knowledge on female fecundity-consequences of matings and the degree of male mating harassment in natural settings. Here we present such data from natural populations of a colour polymorphic damselfly. Using a novel experimental technique of colour dusting males in the field, we show that heritable female colour morphs differ in their propensity to accept male mating attempts. These morphs also differ in their degree of resistance towards male mating attempts, the number of realized matings and in their fecundity-tolerance to matings and mating attempts. These results show that there may be genetic variation in both resistance and tolerance to male mating attempts (fitness consequences of matings) in natural populations, similar to the situation in plant-pathogen resistance systems. Male mating harassment could promote the maintenance of a sexual mating polymorphism in females, one of few empirical examples of sympatric genetic clusters maintained by sexual conflict

    Phylogeny of Diving Beetles Reveals a Coevolutionary Arms Race between the Sexes

    Get PDF
    BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles

    Inactivation of respiratory syncytial virus by zinc finger reactive compounds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infectivity of retroviruses such as HIV-1 and MuLV can be abrogated by compounds targeting zinc finger motif in viral nucleocapsid protein (NC), involved in controlling the processivity of reverse transcription and virus infectivity. Although a member of a different viral family (<it>Pneumoviridae</it>), respiratory syncytial virus (RSV) contains a zinc finger protein M2-1 also involved in control of viral polymerase processivity. Given the functional similarity between the two proteins, it was possible that zinc finger-reactive compounds inactivating retroviruses would have a similar effect against RSV by targeting RSV M2-1 protein. Moreover, inactivation of RSV through modification of an internal protein could yield a safer whole virus vaccine than that produced by RSV inactivation with formalin which modifies surface proteins.</p> <p>Results</p> <p>Three compounds were evaluated for their ability to reduce RSV infectivity: 2,2'-dithiodipyridine (AT-2), tetraethylthiuram disulfide and tetramethylthiuram disulfide. All three were capable of inactivating RSV, with AT-2 being the most potent. The mechanism of action of AT-2 was analyzed and it was found that AT-2 treatment indeed results in the modification of RSV M2-1. Altered intramolecular disulfide bond formation in M2-1 protein of AT-2-treated RSV virions might have been responsible for abrogation of RSV infectivity. AT-2-inactivated RSV was found to be moderately immunogenic in the cotton rats <it>S.hispidus </it>and did not cause a vaccine-enhancement seen in animals vaccinated with formalin-inactivated RSV. Increasing immunogenicity of AT-2-inactivated RSV by adjuvant (Ribi), however, led to vaccine-enhanced disease.</p> <p>Conclusions</p> <p>This work presents evidence that compounds that inactivate retroviruses by targeting the zinc finger motif in their nucleocapsid proteins are also effective against RSV. AT-2-inactivated RSV vaccine is not strongly immunogenic in the absence of adjuvants. In the adjuvanted form, however, vaccine induces immunopathologic response. The mere preservation of surface antigens of RSV, therefore may not be sufficient to produce a highly-efficacious inactivated virus vaccine that does not lead to an atypical disease.</p

    Postcopulatory sexual selection

    Get PDF
    The female reproductive tract is where competition between the sperm of different males takes place, aided and abetted by the female herself. Intense postcopulatory sexual selection fosters inter-sexual conflict and drives rapid evolutionary change to generate a startling diversity of morphological, behavioural and physiological adaptations. We identify three main issues that should be resolved to advance our understanding of postcopulatory sexual selection. We need to determine the genetic basis of different male fertility traits and female traits that mediate sperm selection; identify the genes or genomic regions that control these traits; and establish the coevolutionary trajectory of sexes

    A protease-based biosensor for the detection of schistosome cercariae

    Get PDF
    Parasitic diseases affect millions of people worldwide, causing debilitating illnesses and death. Rapid and cost-effective approaches to detect parasites are needed, especially in resource-limited settings. A common signature of parasitic diseases is the release of specific proteases by the parasites at multiple stages during their life cycles. To this end, we engineered several modular Escherichia coli and Bacillus subtilis whole-cell-based biosensors which incorporate an interchangeable protease recognition motif into their designs. Herein, we describe how several of our engineered biosensors have been applied to detect the presence and activity of elastase, an enzyme released by the cercarial larvae stage of Schistosoma mansoni. Collectively, S. mansoni and several other schistosomes are responsible for the infection of an estimated 200 million people worldwide. Since our biosensors are maintained in lyophilised cells, they could be applied for the detection of S. mansoni and other parasites in settings without reliable cold chain access

    Interpopulation variation in female remating is attributable to female and male effects in Callosobruchus chinensis

    Get PDF
    The evolution of female multiple mating is best understood by consideration of male and female reproductive perspectives. Females should usually be selected to remate at their optimum frequencies whereas males should be selected to manipulate female remating to their advantage. Female remating behavior may therefore be changed by variation of male and female traits. In this study, our objective was to separate the effects of female and male strains on female remating for the adzuki bean beetle, Callosobruchus chinensis, for which there is interstrain variation in female remating frequency. We found that interstrain variation in female remating is primarily attributable to female traits, suggesting genetic variation in female receptivity to remating in C. chinensis. Some interstrain variation in female remating propensity was attributable to an interaction between female and male strains, however, with the males of some strains being good at inducing nonreceptivity in females from one high-remating strain whereas others were good at inducing copulation in nonvirgin females from the high-remating strain. There is, therefore, interstrain variation in male ability to deter females from remating and in male ability to mate successfully with nonvirgin females. These results suggest that mating traits have evolved along different trajectories in different strains of C. chinensis.</p

    Increased Nucleotide Diversity with Transient Y Linkage in Drosophila americana

    Get PDF
    Recombination shapes nucleotide variation within genomes. Patterns are thought to arise from the local recombination landscape, influencing the degree to which neutral variation experiences hitchhiking with selected variation. This study examines DNA polymorphism along Chromosome 4 (element B) of Drosophila americana to identify effects of hitchhiking arising as a consequence of Y-linked transmission. A centromeric fusion between the X and 4(th) chromosomes segregates in natural populations of D. americana. Frequency of the X-4 fusion exhibits a strong positive correlation with latitude, which has explicit consequences for unfused 4(th) chromosomes. Unfused Chromosome 4 exists as a non-recombining Y chromosome or as an autosome proportional to the frequency of the X-4 fusion. Furthermore, Y linkage along the unfused 4 is disrupted as a function of the rate of recombination with the centromere. Inter-population and intra-chromosomal patterns of nucleotide diversity were assayed using six regions distributed along unfused 4(th) chromosomes derived from populations with different frequencies of the X-4 fusion. No difference in overall level of nucleotide diversity was detected among populations, yet variation along the chromosome exhibits a distinct pattern in relation to the X-4 fusion. Sequence diversity is inflated at loci experiencing the strongest Y linkage. These findings are inconsistent with the expected reduction in nucleotide diversity resulting from hitchhiking due to background selection or selective sweeps. In contrast, excessive polymorphism is accruing in association with transient Y linkage, and furthermore, hitchhiking with sexually antagonistic alleles is potentially responsible

    Polychlorinated Biphenyls and Biotransformation Enzymes in Three Species of Sea Turtles from the Baja California Peninsula of Mexico

    Get PDF
    Concentrations of polychlorinated biphenyls (PCBs) as well as the expression patterns of cytochrome P450 (CYP) enzymes and glutathione-S-transferase (GST) activities were measured in livers of loggerhead (Caretta caretta), green (Chelonia mydas), and olive ridley (Lepidocheyls olivacea) sea turtles from the Baja California peninsula of Mexico. The mean concentrations of total PCBs were 18.1, 10.5, and 15.2 ng/g wet weight (ww) respectively for the three species and PCB 153 was the dominant congener in all samples. Total PCB concentrations were dominated by penta- and hexa-chlorinated biphenyls. The mean estimated TEQs were 42.8, 22.9, and 10.4 pg/g (ww) for loggerhead, green, and olive ridley, respectively, and more than 70% was accounted for by non-ortho PCBs. Western blots revealed the presence of hepatic microsomal proteins that cross-reacted with anti-CYP2K1 and anti-CYP3A27 antibodies but not with anti-CYP1A antibody. There were no significant differences in GST activities between species. Grouping congeners based on structure–activity relationships for CYP isoenzymes suggested limited activity of CYP1A contribution to PCB biotransformation in sea turtles. These results suggest potential accumulation of PCBs that are CYP1A substrates and provide evidence for biotransformation capacity, which differs from known animal models, highlighting the need for further studies in reptiles, particularly those threatened with extinction

    Differential Localization and Independent Acquisition of the H3K9me2 and H3K9me3 Chromatin Modifications in the Caenorhabditis elegans Adult Germ Line

    Get PDF
    Histone methylation is a prominent feature of eukaryotic chromatin that modulates multiple aspects of chromosome function. Methyl modification can occur on several different amino acid residues and in distinct mono-, di-, and tri-methyl states. However, the interplay among these distinct modification states is not well understood. Here we investigate the relationships between dimethyl and trimethyl modifications on lysine 9 of histone H3 (H3K9me2 and H3K9me3) in the adult Caenorhabditis elegans germ line. Simultaneous immunofluorescence reveals very different temporal/spatial localization patterns for H3K9me2 and H3K9me3. While H3K9me2 is enriched on unpaired sex chromosomes and undergoes dynamic changes as germ cells progress through meiotic prophase, we demonstrate here that H3K9me3 is not enriched on unpaired sex chromosomes and localizes to all chromosomes in all germ cells in adult hermaphrodites and until the primary spermatocyte stage in males. Moreover, high-copy transgene arrays carrying somatic-cell specific promoters are highly enriched for H3K9me3 (but not H3K9me2) and correlate with DAPI-faint chromatin domains. We further demonstrate that the H3K9me2 and H3K9me3 marks are acquired independently. MET-2, a member of the SETDB histone methyltransferase (HMTase) family, is required for all detectable germline H3K9me2 but is dispensable for H3K9me3 in adult germ cells. Conversely, we show that the HMTase MES-2, an E(z) homolog responsible for H3K27 methylation in adult germ cells, is required for much of the germline H3K9me3 but is dispensable for H3K9me2. Phenotypic analysis of met-2 mutants indicates that MET-2 is nonessential for fertility but inhibits ectopic germ cell proliferation and contributes to the fidelity of chromosome inheritance. Our demonstration of the differential localization and independent acquisition of H3K9me2 and H3K9me3 implies that the trimethyl modification of H3K9 is not built upon the dimethyl modification in this context. Further, these and other data support a model in which these two modifications function independently in adult C. elegans germ cells
    corecore