16,582 research outputs found
A theoretical approach to sound propagation and radiation for ducts with suppressors
The several phenomena involved in theoretical prediction of the far-field sound radiation attenuation from an acoustically lined duct were studied. These include absorption by the suppressor, termination reflections, and far-field radiation. Extensive parametric studies show that the suppressor absorption performance can be correlated with mode cut-off ratio or angle of propagation. The other phenomena can be shown to depend explicitly upon mode cut-off ratio. A complete system can thus be generated which can be used to evaluate aircraft sound suppressors and which can be related to the sound source through the cut-off ratio-acoustic power distribution. Although the method is most fully developed for inlet suppressors, several aft radiated noise phenomena are also discussed. This simplified suppressor design and evaluation method is summarized, the recent improvements in the technique are presented, and areas where further refinement is necessary are discussed. Noise suppressor data from engine experiments are compared with the theoretical calculations
Strong Coupling Expansions for Antiferromagnetic Heisenberg S=1/2 Ladders
The properties of antiferromagnetic Heisenberg ladders with
2, 3, and 4 chains are expanded in the ratio of the intra- and interchain
coupling constants. A simple mapping procedure is introduced to relate the 4
and 2-chain ladders which holds down to moderate values of the expansion
parameters. A second order calculation of the spin gap to the lowest triplet
excitation in the 2- and 4-chain ladders is found to be quite accurate even at
the isotropic point where the couplings are equal. Similar expansions and
mapping procedures are presented for the 3-chain ladders which are in the same
universality class as single chains.Comment: 10 physical pages, uuencoded compressed PostScript file including 12
figures, ETH-TH/942
Research Study for Determination of Liquid Surface Profile in a Cryogenic Tank During Gas Injection Annual Report, 18 Jun. 1967 - 17 Jun. 1968
Determining entrainment of entrapped liquid as function of air flow, and viscosit
Research Study for Determination of Liquid Surface Profile in a Cryogenic Tank During Gas Injection Quarterly Report, 18 Dec. 1967 - 17 Mar. 1968
Correlation equation on entrainment-viscosity behavior in cryogenic tank during gas injectio
Spin Gaps in Coupled t-J Ladders
Spin gaps in coupled - ladders are investigated by exact
diagonalization of small clusters up to 48 sites. At half-filling, the
numerical results for the triplet excitation spectrum are in very good
agreement with a second order perturbation expansion in term of small
inter-ladder and intra-ladder exchange couplings between rungs
(). The band of local triplet excitations moving
coherently along the ladder (with momenta close to ) is split by the
inter-ladder coupling. For intermediate couplings finite size scaling is used
to estimate the spin gap. In the isotropic infinite 4-chain system (two coupled
ladders) we find a spin gap of , roughly half of the single ladder
spin gap. When the system is hole doped, bonding and anti-bonding bound pairs
of holes can propagate coherently along the chains and the spin gap remains
finite.Comment: 11 pages, 5 figures, uuencoded form of postscript files of figures
and text, LPQTH-94/
Phase transitions and crossovers in reaction-diffusion models with catalyst deactivation
The activity of catalytic materials is reduced during operation by several
mechanisms, one of them being poisoning of catalytic sites by chemisorbed
impurities or products. Here we study the effects of poisoning in two
reaction-diffusion models in one-dimensional lattices with randomly distributed
catalytic sites. Unimolecular and bimolecular single-species reactions are
considered, without reactant input during the operation. The models show
transitions between a phase with continuous decay of reactant concentration and
a phase with asymptotic non-zero reactant concentration and complete poisoning
of the catalyst. The transition boundary depends on the initial reactant and
catalyst concentrations and on the poisoning probability. The critical system
behaves as in the two-species annihilation reaction, with reactant
concentration decaying as t^{-1/4} and the catalytic sites playing the role of
the second species. In the unimolecular reaction, a significant crossover to
the asymptotic scaling is observed even when one of those parameters is 10% far
from criticality. Consequently, an effective power-law decay of concentration
may persist up to long times and lead to an apparent change in the reaction
kinetics. In the bimolecular single-species reaction, the critical scaling is
followed by a two-dimensional rapid decay, thus two crossovers are found.Comment: 8 pages, 7 figure
Low-cycle fatigue of Type 347 stainless steel and Hastelloy alloy X in hydrogen gas and in air at elevated temperatures
An investigation was conducted to assess the low-cycle fatigue resistance of two alloys, Type 347 stainless steel and Hastelloy Alloy X, that were under consideration for use in nuclear-powered rocket vehicles. Constant-amplitude, strain-controlled fatigue tests were conducted under compressive strain cycling at a constant strain rate of 0.001/sec and at total axial strain ranges of 1.5, 3.0, and 5.0 %, in both laboratory-air and low-pressure hydrogen-gas environments at temperatures from 538 to 871 C. Specimens were obtained from three heats of Type 347 stainless steel bar and two heats of Hastelloy Alloy X. The tensile properties of each heat were determined at 21, 538, 649, and 760 C. The continuous cycling fatigue resistance was determined for each heat at temperatures of 538, 760, and 871 C. The Type 347 stainless steel exhibited equal or superior fatigue resistance to the Hastelloy Alloy X at all conditions of this study
- …