78 research outputs found

    A crib-shaped triplet pairing gap function for an orthogonal pair of quasi-one dimensional Fermi surfaces in Sr2_2RuO4_4

    Full text link
    The competition between spin-triplet and singlet pairings is studied theoretically for the tight-binding α\alpha-β\beta bands in Sr2_2RuO4_4, which arise from two sets of quasi-one dimensional Fermi surfaces. Using multiband FLEX approximation, where we incorporate an anisotropy in the spin fluctuations as suggested from experiments, we show that (i) the triplet can dominate over the singlet (which turns out to be extended s), and (ii) the triplet gap function optimized in the Eliashberg equation has an unusual, very non-sinusoidal form, whose time-reversal-broken combination exhibits a crib-shaped amplitude with dips.Comment: 5 pages, RevTeX, to appear in Phys.Rev.B (Rapid Communications

    Comparison of superconductivity in Sr_2RuO_4 and copper oxides

    Full text link
    To compare the superconductivity in strongly correlated electron systems with the antiferromagnetic fluctuations in the copper oxides and with the ferromagnetic fluctuations in Sr_2RuO_4 a t-J-I model is proposed. The antiferromagnetic coupling J results in the superconducting state of d_{x^2-y^2} symmetry and the ferromagnetic coupling constant I results in the spin-triplet p-type state. The difference in the gap anisotropies provides the large difference in T_c values, for the typical values of the coupling constants: T_c of order of 1K for the ruthenate and T_c of order of 100K for the cuprates.Comment: 4 pages, RevTEX, 3 figs. Submitted to Phys. Rev. Let

    Phase Transitions Between Topologically Distinct Gapped Phases in Isotropic Spin Ladders

    Full text link
    We consider various two-leg ladder models exhibiting gapped phases. All of these phases have short-ranged valence bond ground states, and they all exhibit string order. However, we show that short-ranged valence bond ground states divide into two topologically distinct classes, and as a consequence, there exist two topologically distinct types of string order. Therefore, not all gapped phases belong to the same universality class. We show that phase transitions occur when we interpolate between models belonging to different topological classes, and we study the nature of these transitions.Comment: 11 pages, 16 postscript figure

    Linear Field Dependence of the Normal-State In-Plane Magnetoresistance of Sr2RuO4

    Full text link
    The transverse and longitudinal in-plane magnetoresistances in the normal state of superconducting Sr2RuO4 single crystals have been measured. At low temperatures, both of them were found to be positive with a linear magnetic-field dependence above a threshold field, a result not expected from electronic band theory. We argue that such behavior is a manifestation of a novel coherent state characterized by a spin pseudo gap in the quasi-particle excitation spectrum in Sr2RuO4.Comment: 4 pages + 5 figure

    Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95

    Get PDF
    We report microwave surface resistance (Rs) measurements on two very-high-quality YBa2Cu3O6.95 crystals which exhibit extremely low residual loss at 1.2 K (2-6 μΩ at 2 GHz), a broad, reproducible peak at around 38 K, and a rapid increase in loss, by 4 orders of magnitude, between 80 and 93 K. These data provide one ingredient in the determination of the temperature dependence of the real part of the microwave conductivity, σ1(T), and of the quasiparticle scattering time. The other necessary ingredient is an accurate knowledge of the magnitude and temperature dependence of the London penetration depth, λ(T). This is derived from published data, from microwave data of Anlage, Langley, and co-workers and from, high-quality μSR data. We infer, from a careful analysis of all available data, that λ2(0)/λ2(T) is well approximated by the simple function 1-t2, where t=T/Tc, and that the low-temperature data are incompatible with the existence of an s-wave, BCS-like gap. Combining the Rs and λ(T) data, we find that σ1(T), has a broad peak around 32 K with a value about 20 times that at Tc. Using a generalized two-fluid model, we extract the temperature dependence of the quasiparticle scattering rate which follows an exponential law, exp(T/T0), where T0≊12 K, for T between 15 and 84 K. Such a temperature dependence has previously been observed in measurements of the nuclear spin-lattice relaxation rate. Both the uncertainties in our analysis and the implications for the mechanism of high-temperature superconductivity are discussed

    Opioid activation of toll-like receptor 4 contributes to drug reinforcement

    Get PDF
    Opioid action was thought to exert reinforcing effects solely via the initial agonism of opioid receptors. Here, we present evidence for an additional novel contributor to opioid reward: the innate immune pattern-recognition receptor, toll-like receptor 4 (TLR4), and its MyD88-dependent signaling. Blockade of TLR4/MD2 by administration of the nonopioid, unnatural isomer of naloxone, (+)-naloxone (rats), or two independent genetic knock-outs of MyD88-TLR4-dependent signaling (mice), suppressed opioid-induced conditioned place preference. (+)-Naloxone also reduced opioid (remifentanil) self-administration (rats), another commonly used behavioral measure of drug reward. Moreover, pharmacological blockade of morphine-TLR4/MD2 activity potently reduced morphine-induced elevations of extracellular dopamine in rat nucleus accumbens, a region critical for opioid reinforcement. Importantly, opioid-TLR4 actions are not a unidirectional influence on opioid pharmacodynamics, since TLR4−/− mice had reduced oxycodone-induced p38 and JNK phosphorylation, while displaying potentiated analgesia. Similar to our recent reports of morphine-TLR4/MD2 binding, here we provide a combination of in silico and biophysical data to support (+)-naloxone and remifentanil binding to TLR4/MD2. Collectively, these data indicate that the actions of opioids at classical opioid receptors, together with their newly identified TLR4/MD2 actions, affect the mesolimbic dopamine system that amplifies opioid-induced elevations in extracellular dopamine levels, therefore possibly explaining altered opioid reward behaviors. Thus, the discovery of TLR4/MD2 recognition of opioids as foreign xenobiotic substances adds to the existing hypothesized neuronal reinforcement mechanisms, identifies a new drug target in TLR4/MD2 for the treatment of addictions, and provides further evidence supporting a role for central proinflammatory immune signaling in drug reward.M. R. Hutchinson... J. Thomas, K. van Steeg... A. A. Somogyi... et al

    Molecular biology of baculovirus and its use in biological control in Brazil

    Full text link

    Uma visão sobre qualidade do solo

    Full text link
    • …
    corecore