380 research outputs found
Professionalism, golf coaching and a master of science degree
A distinction can be made between 'professionalisation', which is concerned with occupational status and standing, and 'professionalism,' which refers to matters of quality and standards of practice (especially specialized knowledge, ethics and altruism). The purpose of this stimulus article is to present key features of contemporary medical professionalism as a basis for critically reflecting on discourse associated with Tiger Woods' current coach, Sean Foley. It is suggested that that provision of a Master of Science degree in golf teaching/coaching would facilitate the development of 'professionalism' in golf coaches
Multi-Channel Kondo Necklace
A multi--channel generalization of Doniach's Kondo necklace model is
formulated, and its phase diagram studied in the mean--field approximation. Our
intention is to introduce the possible simplest model which displays some of
the features expected from the overscreened Kondo lattice. The conduction
electron channels are represented by sets of pseudospins \vt_{j}, , which are all antiferromagnetically coupled to a periodic array of
|\vs|=1/2 spins. Exploiting permutation symmetry in the channel index
allows us to write down the self--consistency equation for general . For
, we find that the critical temperature is rising with increasing Kondo
interaction; we interpret this effect by pointing out that the Kondo coupling
creates the composite pseudospin objects which undergo an ordering transition.
The relevance of our findings to the underlying fermionic multi--channel
problem is discussed.Comment: 29 pages (2 figures upon request from [email protected]), LATEX,
submitted for publicatio
Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance
AbstractMany different definitions for multidrug-resistant (MDR), extensively drug-resistant (XDR) and pandrug-resistant (PDR) bacteria are being used in the medical literature to characterize the different patterns of resistance found in healthcare-associated, antimicrobial-resistant bacteria. A group of international experts came together through a joint initiative by the European Centre for Disease Prevention and Control (ECDC) and the Centers for Disease Control and Prevention (CDC), to create a standardized international terminology with which to describe acquired resistance profiles in Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae (other than Salmonella and Shigella), Pseudomonas aeruginosa and Acinetobacter spp., all bacteria often responsible for healthcare-associated infections and prone to multidrug resistance. Epidemiologically significant antimicrobial categories were constructed for each bacterium. Lists of antimicrobial categories proposed for antimicrobial susceptibility testing were created using documents and breakpoints from the Clinical Laboratory Standards Institute (CLSI), the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the United States Food and Drug Administration (FDA). MDR was defined as acquired non-susceptibility to at least one agent in three or more antimicrobial categories, XDR was defined as non-susceptibility to at least one agent in all but two or fewer antimicrobial categories (i.e. bacterial isolates remain susceptible to only one or two categories) and PDR was defined as non-susceptibility to all agents in all antimicrobial categories. To ensure correct application of these definitions, bacterial isolates should be tested against all or nearly all of the antimicrobial agents within the antimicrobial categories and selective reporting and suppression of results should be avoided
Multipartite Entanglement and Quantum State Exchange
We investigate multipartite entanglement in relation to the theoretical
process of quantum state exchange. In particular, we consider such entanglement
for a certain pure state involving two groups of N trapped atoms. The state,
which can be produced via quantum state exchange, is analogous to the
steady-state intracavity state of the subthreshold optical nondegenerate
parametric amplifier. We show that, first, it possesses some 2N-way
entanglement. Second, we place a lower bound on the amount of such entanglement
in the state using a novel measure called the entanglement of minimum bipartite
entropy.Comment: 12 pages, 4 figure
Optical spectroscopic study of the interplay of spin and charge in NaV2O5
We investigate the temperature dependent optical properties of NaV2O5, in the
energy range 4meV-4eV. The symmetry of the system is discussed on the basis of
infrared phonon spectra. By analyzing the optically allowed phonons at
temperatures below and above the phase transition, we conclude that a
second-order change to a larger unit cell takes place below 34 K, with a
fluctuation regime extending over a broad temperature range. In the high
temperature undistorted phase, we find good agreement with the recently
proposed centrosymmetric space group Pmmn. On the other hand, the detailed
analysis of the electronic excitations detected in the optical conductivity,
provides direct evidence for a charge disproportionated electronic
ground-state, at least on a locale scale: A consistent interpretation of both
structural and optical conductivity data requires an asymmetrical charge
distribution on each rung, without any long range order. We show that, because
of the locally broken symmetry, spin-flip excitations carry a finite electric
dipole moment, which is responsible for the detection of direct two-magnon
optical absorption processes for E parallel to the a axis. The charged-magnon
model, developed to interpret the optical conductivity of NaV2O5, is described
in detail, and its relevance to other strongly correlated electron systems,
where the interplay of spin and charge plays a crucial role in determining the
low energy electrodynamics, is discussed.Comment: Revtex, 19 pages, 16 postscript pictures embedded in the text,
submitted to PRB. Find more stuff at
http://www.stanford.edu/~damascel/andreaphd.html or
http://www.ub.rug.nl/eldoc/dis/science/a.damascelli
Theory of excited state absorptions in phenylene-based -conjugated polymers
Within a rigid-band correlated electron model for oligomers of
poly-(paraphenylene) (PPP) and poly-(paraphenylenevinylene) (PPV), we show that
there exist two fundamentally different classes of two-photon A states in
these systems to which photoinduced absorption (PA) can occur. At relatively
lower energies there occur A states which are superpositions of one
electron - one hole (1e--1h) and two electron -- two hole (2e--2h) excitations,
that are both comprised of the highest delocalized valence band and the lowest
delocalized conduction band states only. The dominant PA is to one specific
member of this class of states (the mA). In addition to the above class of
A states, PA can also occur to a higher energy kA state whose 2e--2h
component is {\em different} and has significant contributions from excitations
involving both delocalized and localized bands. Our calculated scaled energies
of the mA and the kA agree reasonably well to the experimentally
observed low and high energy PAs in PPV. The calculated relative intensities of
the two PAs are also in qualitative agreement with experiment. In the case of
ladder-type PPP and its oligomers, we predict from our theoretical work a new
intense PA at an energy considerably lower than the region where PA have been
observed currently. Based on earlier work that showed that efficient
charge--carrier generation occurs upon excitation to odd--parity states that
involve both delocalized and localized bands, we speculate that it is the
characteristic electronic nature of the kA that leads to charge generation
subsequent to excitation to this state, as found experimentally.Comment: Revtex4 style, 2 figures inserted in the text, three tables, 10 page
The Structure of Interpretations in Family Therapy: A Video-Enhanced Exploration *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73991/1/j.1545-5300.2000.39204.x.pd
Aligned silk-based 3-D architectures for contact guidance in tissue engineering
An important challenge in the biomaterials field is to mimic the structure of functional tissues via cell and extracellular matrix (ECM) alignment and anisotropy. Toward this goal, silk-based scaffolds resembling bone lamellar structure were developed using a freeze-drying technique. The structure could be controlled directly by solute concentration and freezing parameters, resulting in lamellar scaffolds with regular morphology. Different post-treatments, such as methanol, water annealing and steam sterilization, were investigated to induce water stability. The resulting structures exhibited significant differences in terms of morphological integrity, structure and mechanical properties. The lamellar thicknesses were ∼2.6 μm for the methanol-treated scaffolds and ∼5.8 μm for water-annealed. These values are in the range of those reported for human lamellar bone. Human bone marrow-derived mesenchymal stem cells (hMSC) were seeded on these silk fibroin lamellar scaffolds and grown under osteogenic conditions to assess the effect of the microstructure on cell behavior. Collagen in the newly deposited ECM was found aligned along the lamellar architectures. In the case of methanol-treated lamellar structures, the hMSC were able to migrate into the interior of the scaffolds, producing a multilamellar hybrid construct. The present morphology constitutes a useful pattern onto which hMSC cells attach and proliferate for guided formation of a highly oriented extracellular matrix.A.L.O. wishes to thank financial support from the Portuguese Foundation for Science and Technology (SFRH/BPD/39102/2007) under POCTI Program. This work was partially supported by FCT through POCTI and/or FEDER programs and by the NIH [DE017207, EB003210 and EB002520]
Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95
We report microwave surface resistance (Rs) measurements on two very-high-quality YBa2Cu3O6.95 crystals which exhibit extremely low residual loss at 1.2 K (2-6 μΩ at 2 GHz), a broad, reproducible peak at around 38 K, and a rapid increase in loss, by 4 orders of magnitude, between 80 and 93 K. These data provide one ingredient in the determination of the temperature dependence of the real part of the microwave conductivity, σ1(T), and of the quasiparticle scattering time. The other necessary ingredient is an accurate knowledge of the magnitude and temperature dependence of the London penetration depth, λ(T). This is derived from published data, from microwave data of Anlage, Langley, and co-workers and from, high-quality μSR data. We infer, from a careful analysis of all available data, that λ2(0)/λ2(T) is well approximated by the simple function 1-t2, where t=T/Tc, and that the low-temperature data are incompatible with the existence of an s-wave, BCS-like gap. Combining the Rs and λ(T) data, we find that σ1(T), has a broad peak around 32 K with a value about 20 times that at Tc. Using a generalized two-fluid model, we extract the temperature dependence of the quasiparticle scattering rate which follows an exponential law, exp(T/T0), where T0≊12 K, for T between 15 and 84 K. Such a temperature dependence has previously been observed in measurements of the nuclear spin-lattice relaxation rate. Both the uncertainties in our analysis and the implications for the mechanism of high-temperature superconductivity are discussed
- …