65 research outputs found
How to manage KRAS G12C-mutated advanced non-small-cell lung cancer
Constitutive KRAS signalling drives tumorigenesis across several cancer types. In non-small-cell lung cancer (NSCLC) activating KRAS mutations occur in ~30% of cases, and the glycine to cysteine substitution at codon 12 (G12C) is the most common KRAS alteration. Although KRAS mutations have been considered undruggable for over 40 years, the recent discovery of allelic-specific KRAS inhibitors has paved the way to personalized cancer medicine for patients with tumours harbouring these mutations. Here, we review the current treatment landscape for patients with advanced NSCLCs harbouring a KRAS G12C mutation, including PD-(L) 1-based therapies and direct KRAS inhibitors as well as sequential treatment options. We also explore the possible mechanisms of resistance to KRAS inhibition and strategies to overcome resistance in patients with KRAS G12C-mutant NSCLC
Resumption of Immune Checkpoint Inhibitor Therapy After Immune-Mediated Colitis
PURPOSE: Immune checkpoint inhibitor (ICI) therapy often is suspended because of immune-mediated diarrhea
and colitis (IMDC). We examined the rate of and risk factors for IMDC recurrence after ICI resumption.
METHODS: This retrospective multicenter study examined patients who resumed ICI therapy after improvement of
IMDC between January 2010 and November 2018. Univariable and multivariable logistic regression analyses
assessed the association of clinical covariates and IMDC recurrence.
RESULTS: Of the 167 patients in our analysis, 32 resumed an anti–cytotoxic T-cell lymphocyte-4 (CTLA-4) agent,
and 135 an anti–programmed cell death 1 or ligand 1 (PD-1/L1) agent. The median age was 60 years
(interquartile range [IQR], 50-69 years). The median duration from IMDC to restart of ICI treatment was 49 days
(IQR, 23-136 days). IMDC recurred in 57 patients (34%) overall (44% of those receiving an anti–CTLA-4 and
32% of those receiving an anti–PD-1/L1); 47 of these patients (82%) required immunosuppressive therapy for
recurrent IMDC, and all required permanent discontinuation of ICI therapy. The median duration from ICI
resumption to IMDC recurrence was 53 days (IQR, 22-138 days). On multivariable logistic regression, patients
who received anti–PD-1/L1 therapy at initial IMDC had a higher risk of IMDC recurrence (odds ratio [OR], 3.45;
95% CI, 1.59 to 7.69; P = .002). Risk of IMDC recurrence was higher for patients who required immunosuppression for initial IMDC (OR, 3.22; 95% CI, 1.08 to 9.62; P = .019) or had a longer duration of IMDC
symptoms in the initial episode (OR, 1.01; 95% CI, 1.00 to 1.03; P = .031). Risk of IMDC recurrence was lower
after resumption of anti–PD-1/L1 therapy than after resumption of anti–CTLA-4 therapy (OR, 0.30; 95% CI, 0.11
to 0.81; P = .019).
CONCLUSION: One third of patients who resumed ICI treatment after IMDC experienced recurrent IMDC. Recurrence of IMDC was less frequent after resumption of anti–PD-1/L1 than after resumption of anti–CTLA-
Clinical and Molecular Features of Long-term Response to Immune Checkpoint Inhibitors in Patients with Advanced Non-Small Cell Lung Cancer
PURPOSE: We sought to identify features of patients with advanced non-small cell lung cancer (NSCLC) who achieve long-term response (LTR) to immune checkpoint inhibitors (ICI), and how these might differ from features predictive of short-term response (STR).
EXPERIMENTAL DESIGN: We performed a multicenter retrospective analysis of patients with advanced NSCLC treated with ICIs between 2011 and 2022. LTR and STR were defined as response ≥ 24 months and response \u3c 12 months, respectively. Tumor programmed death ligand 1 (PD-L1) expression, tumor mutational burden (TMB), next-generation sequencing (NGS), and whole-exome sequencing (WES) data were analyzed to identify characteristics enriched in patients achieving LTR compared with STR and non-LTR.
RESULTS: Among 3,118 patients, 8% achieved LTR and 7% achieved STR, with 5-year overall survival (OS) of 81% and 18% among LTR and STR patients, respectively. High TMB (≥50th percentile) enriched for LTR compared with STR (P = 0.001) and non-LTR (P \u3c 0.001). Whereas PD-L1 ≥ 50% enriched for LTR compared with non-LTR (P \u3c 0.001), PD-L1 ≥ 50% did not enrich for LTR compared with STR (P = 0.181). Nonsquamous histology (P = 0.040) and increasing depth of response [median best overall response (BOR) -65% vs. -46%, P \u3c 0.001] also associated with LTR compared with STR; no individual genomic alterations were uniquely enriched among LTR patients.
CONCLUSIONS: Among patients with advanced NSCLC treated with ICIs, distinct features including high TMB, nonsquamous histology, and depth of radiographic improvement distinguish patients poised to achieve LTR compared with initial response followed by progression, whereas high PD-L1 does not
Comutations and KRASG12C Inhibitor Efficacy in Advanced NSCLC
Molecular modifiers of KRASG12C inhibitor (KRASG12Ci) efficacy in advanced KRASG12C-mutant NSCLC are poorly defined. In a large unbiased clinicogenomic analysis of 424 patients with non-small cell lung cancer (NSCLC), we identified and validated coalterations in KEAP1, SMARCA4, and CDKN2A as major independent determinants of inferior clinical outcomes with KRASG12Ci monotherapy. Collectively, comutations in these three tumor suppressor genes segregated patients into distinct prognostic subgroups and captured ∼50% of those with early disease progression (progression-free survival ≤3 months) with KRASG12Ci. Pathway-level integration of less prevalent coalterations in functionally related genes nominated PI3K/AKT/MTOR pathway and additional baseline RAS gene alterations, including amplifications, as candidate drivers of inferior outcomes with KRASG12Ci, and revealed a possible association between defective DNA damage response/repair and improved KRASG12Ci efficacy. Our findings propose a framework for patient stratification and clinical outcome prediction in KRASG12C-mutant NSCLC that can inform rational selection and appropriate tailoring of emerging combination therapies
Federated Benchmarking of Medical Artificial Intelligence With MedPerf
Medical artificial intelligence (AI) has tremendous potential to advance healthcare by supporting and contributing to the evidence-based practice of medicine, personalizing patient treatment, reducing costs, and improving both healthcare provider and patient experience. Unlocking this potential requires systematic, quantitative evaluation of the performance of medical AI models on large-scale, heterogeneous data capturing diverse patient populations. Here, to meet this need, we introduce MedPerf, an open platform for benchmarking AI models in the medical domain. MedPerf focuses on enabling federated evaluation of AI models, by securely distributing them to different facilities, such as healthcare organizations. This process of bringing the model to the data empowers each facility to assess and verify the performance of AI models in an efficient and human-supervised process, while prioritizing privacy. We describe the current challenges healthcare and AI communities face, the need for an open platform, the design philosophy of MedPerf, its current implementation status and real-world deployment, our roadmap and, importantly, the use of MedPerf with multiple international institutions within cloud-based technology and on-premises scenarios. Finally, we welcome new contributions by researchers and organizations to further strengthen MedPerf as an open benchmarking platform
Understanding molecular mechanisms of resistance to immune checkpoint inhibitors in advanced non-small cell lung cancer (NSCLC)
Immune checkpoint inhibitors (ICI) that target PD-1/PD-L1 have recently emerged as an integral component of front-line treatment in metastatic NSCLC patients. The PD-1 inhibitor pembrolizumab is approved as monotherapy for advanced NSCLC with a PD-L1 tumor proportion score (TPS) of ≥1% and in combination with platinum doublet chemotherapy regardless of PD-L1 expression level. However, responses to either regimen occur in only a minority of cases, and PD-L1 TPS is limited as a biomarker in predicting whether a cancer will respond to PD-1 inhibition alone or would be more likely to benefit from PD-1 inhibition plus chemotherapy. Additional biomarkers of immunotherapy efficacy, such as tumor mutational burden (TMB), have not been incorporated into routine clinical practice for treatment selection. The identification of patients who have the greatest likelihood of responding to immunotherapies is critical for guiding treatment decisions. IN addition, early indicators of response could theoretically prevent patients from staying on an ineffective therapy where they might experience complications due to disease progression or develop toxicities from unnecessary exposure to an inactive agent. The aim of this research project is to investigate the clinicopathologic and molecular determinant of response/resistance to the currently available immune checkpoint inhibitors, in order to identify therapeutic vulnerabilities that can be exploited to improve the clinical outcomes of patients with advanced NSCLC
Afatinib in the first-line treatment of patients with non-small cell lung cancer: clinical evidence and experience
Epidermal growth factor receptor ( EGFR) gene mutations identify a molecularly defined subset of non-small cell lung cancer (NSCLC) patients who display an excellent sensitivity to EGFR tyrosine kinase inhibitors (TKIs). First-generation reversible EGFR TKIs, gefitinib and erlotinib have been proven to improve the objective response rate and to prolong the progression-free survival compared with standard chemotherapy in large phase III trials. Unfortunately, virtually all patients develop resistance to treatment, usually within 9–12 months. Afatinib is an irreversible ErbB family inhibitor initially designed to overcome the development of resistance. Compared with gefitinib in a first-line setting, afatinib prolonged progression-free survival and time to treatment failure, without impacting on overall survival in the general population of EGFR -mutant patients. However, afatinib has been shown to prolong overall survival in the subset of patients with an EGFR exon 19 deletion compared with chemotherapy. The aim of this review is to summarize the clinical evidence available to date and to critically discuss the place in therapy of afatinib in the rapidly expanding landscape of EGFR -mutant NSCLC first-line therapy
- …