131 research outputs found
Stability of Tin- versus Lead-Halide Perovskites: Ab Initio Molecular Dynamics Simulations of Perovskite/Water Interfaces
Tin-halide perovskites (THPs) have emerged as promising lead-free perovskites for photovoltaics and photocatalysis applications but still fall short in terms of stability and efficiency with respect to their lead-based counterpart. A detailed understanding of the degradation mechanism of THPs in a water environment is missing. This Letter presents ab initio molecular dynamics (AIMD) simulations to unravel atomistic details of THP/water interfaces comparing methylammonium tin iodide, MASnI3, with the lead-based MAPbI3. Our results reveal facile solvation of surface tin-iodine bonds in MASnI3, while MAPbI3remains more robust to degradation despite a larger amount of adsorbed water molecules. Additional AIMD simulations on dimethylammonium tin bromide, DMASnBr3, investigate the origins of their unprecedented water stability. Our results indicate the presence of amorphous surface layers of hydrated zero-dimensional SnBr3complexes which may protect the inner structure from degradation and explain their success as photocatalysts. We believe that the atomistic details of the mechanisms affecting THP (in-)stability may inspire new strategies to stabilize THPs
Air- and water-stable and photocatalytically active germanium-based 2D perovskites by organic spacer engineering
There is increasing interest in the role of metal halide perovskites for heterogeneous catalysis. Here, we report a Ge-based 2D perovskite material that shows intrinsic water stability realized through organic cation engineering. Incorporating 4-phenylbenzilammonium (PhBz) we demonstrate, by means of extended experimental and computational results, that PhBz2GeBr4 and PhBz2GeI4 can achieve relevant air and water stability. The creation of composites embedding graphitic carbon nitride (g-C3N4) allows a proof of concept for light-induced hydrogen evolution in an aqueous environment by 2D Ge-based perovskites thanks to the effective charge transfer at the heterojunction between the two semiconductors
Selective PDE4 subtype inhibition provides new opportunities to intervene in neuroinflammatory versus myelin damaging hallmarks of multiple sclerosis
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterized by focal inflammatory lesions and prominent demyelination. Even though the currently available therapies are effective in treating the initial stages of disease, they are unable to halt or reverse disease progression into the chronic progressive stage. Thus far, no repair-inducing treatments are available for progressive MS patients. Hence, there is an urgent need for the development of new therapeutic strategies either targeting the destructive immunological demyelination or boosting endogenous repair mechanisms. Using in vitro, ex vivo, and in vivo models, we demonstrate that selective inhibition of phosphodiesterase 4 (PDE4), a family of enzymes that hydrolyzes and inactivates cyclic adenosine monophosphate (cAMP), reduces inflammation and promotes myelin repair. More specifically, we segregated the myelination-promoting and anti-inflammatory effects into a PDE4D- and PDE4B-dependent process respectively. We show that inhibition of PDE4D boosts oligodendrocyte progenitor cells (OPC) differentiation and enhances (re)myelination of both murine OPCs and human iPSC-derived OPCs. In addition, PDE4D inhibition promotes in vivo remyelination in the cuprizone model, which is accompanied by improved spatial memory and reduced visual evoked potential latency times. We further identified that PDE4B-specific inhibition exerts anti-inflammatory effects since it lowers in vitro monocytic nitric oxide (NO) production and improves in vivo neurological scores during the early phase of experimental autoimmune encephalomyelitis (EAE). In contrast to the pan PDE4 inhibitor roflumilast, the therapeutic dose of both the PDE4B-specific inhibitor A33 and the PDE4D-specific inhibitor Gebr32a did not trigger emesis-like side effects in rodents. Finally, we report distinct PDE4D isoform expression patterns in human area postrema neurons and human oligodendroglia lineage cells. Using the CRISPR-Cas9 system, we confirmed that pde4d1/2 and pde4d6 are the key targets to induce OPC differentiation. Collectively, these data demonstrate that gene specific PDE4 inhibitors have potential as novel therapeutic agents for targeting the distinct disease processes of MS
Non-Antioxidant Properties of α-Tocopherol Reduce the Anticancer Activity of Several Protein Kinase Inhibitors In Vitro
The antioxidant properties of α-tocopherol have been proposed to play a beneficial chemopreventive role against cancer. However, emerging data also indicate that it may exert contrasting effects on the efficacy of chemotherapeutic treatments when given as dietary supplement, being in that case harmful for patients. This dual role of α-tocopherol and, in particular, its effects on the efficacy of anticancer drugs remains poorly documented. For this purpose, we studied here, using high throughput flow cytometry, the direct impact of α-tocopherol on apoptosis and cell cycle arrest induced by different cytotoxic agents on various models of cancer cell lines in vitro. Our results indicate that physiologically relevant concentrations of α-tocopherol strongly compromise the cytotoxic and cytostatic action of various protein kinase inhibitors (KI), while other classes of chemotherapeutic agents or apoptosis inducers are unaffected by this vitamin. Interestingly, these anti-chemotherapeutic effects of α-tocopherol appear to be unrelated to its antioxidant properties since a variety of other antioxidants were completely neutral toward KI-induced cell cycle arrest and cell death. In conclusion, our data suggest that dietary α-tocopherol could limit KI effects on tumour cells, and, by extent, that this could result in a reduction of the clinical efficacy of anti-cancer treatments based on KI molecules
Interferon-α Regulates Glutaminase 1 Promoter through STAT1 Phosphorylation: Relevance to HIV-1 Associated Neurocognitive Disorders
HIV-1 associated neurocognitive disorders (HAND) develop during progressive HIV-1 infection and affect up to 50% of infected individuals. Activated microglia and macrophages are critical cell populations that are involved in the pathogenesis of HAND, which is specifically related to the production and release of various soluble neurotoxic factors including glutamate. In the central nervous system (CNS), glutamate is typically derived from glutamine by mitochondrial enzyme glutaminase. Our previous study has shown that glutaminase is upregulated in HIV-1 infected monocyte-derived-macrophages (MDM) and microglia. However, how HIV-1 leads to glutaminase upregulation, or how glutaminase expression is regulated in general, remains unclear. In this study, using a dual-luciferase reporter assay system, we demonstrated that interferon (IFN) α specifically activated the glutaminase 1 (GLS1) promoter. Furthermore, IFN-α treatment increased signal transducer and activator of transcription 1 (STAT1) phosphorylation and glutaminase mRNA and protein levels. IFN-α stimulation of GLS1 promoter activity correlated to STAT1 phosphorylation and was reduced by fludarabine, a chemical that inhibits STAT1 phosphorylation. Interestingly, STAT1 was found to directly bind to the GLS1 promoter in MDM, an effect that was dependent on STAT1 phosphorylation and significantly enhanced by IFN-α treatment. More importantly, HIV-1 infection increased STAT1 phosphorylation and STAT1 binding to the GLS1 promoter, which was associated with increased glutamate levels. The clinical relevance of these findings was further corroborated with investigation of post-mortem brain tissues. The glutaminase C (GAC, one isoform of GLS1) mRNA levels in HIV associated-dementia (HAD) individuals correlate with STAT1 (p<0.01), IFN-α (p<0.05) and IFN-β (p<0.01). Together, these data indicate that both HIV-1 infection and IFN-α treatment increase glutaminase expression through STAT1 phosphorylation and by binding to the GLS1 promoter. Since glutaminase is a potential component of elevated glutamate production during the pathogenesis of HAND, our data will help to identify additional therapeutic targets for the treatment of HAND
PKCδ Sensitizes Neuroblastoma Cells to L-Buthionine-Sulfoximine and Etoposide Inducing Reactive Oxygen Species Overproduction and DNA Damage
Neuroblastoma is a type of pediatric cancer. The sensitivity of neuroblastoma (NB) cancer cells to chemotherapy and radiation is inhibited by the presence of antioxidants, such as glutathione (GSH), which is crucial in counteracting the endogenous production of reactive oxygen species (ROS). We have previously demonstrated that cells depleted of GSH undergo apoptosis via oxidative stress and Protein kinase C (PKC) δ activation. In the present study, we transfected PKCδ in NB cells resistant to oxidative death induced by L-buthionine-S,R-sulfoximine (BSO), a GSH-depleting agent. Cell responses, in terms of ROS production, apoptosis and DNA damage were evaluated. Moreover, PKCδ activation was monitored by analyzing the phosphorylation status of threonine 505 residue, carrying out PKC activity assay and investigating the subcellular localization of the kinase. The cell responses obtained in BSO-resistant cells were also compared with those obtained in BSO-sensitive cells subjected to the same experimental protocol. Our results demonstrate, for the first time, that PKCδ induces DNA oxidation and ROS overproduction leading to apoptosis of BSO-resistant NB cells and potentiates the cytotoxic effects induced by BSO in sensitive cells. Moreover, PKCδ overexpression enhances the sensitivity of NB cells to etoposide, a well-characterised drug, commonly used in neuroblastoma therapy. Altogether our data provide evidence of a pro-oxidant role of PKCδ that might be exploited to design new therapeutic strategies aimed at selective killing of cancer cells and overcoming drug resistance. However, it becomes evident that a more detailed understanding of ROS-mediated signaling in cancer cells is necessary for the development of redox-modulated therapeutic approaches
Instability of Tin Iodide Perovskites: Bulk p-Doping versus Surface Tin Oxidation
Tin halide perovskites represent the only realistic route toward lead-free perovskite optoelectronics. Despite significant progress, however, the device efficiency and stability of solar cells are still limited by the perovskite self-p-doping and by Sn(II) oxidation to Sn(IV). By employing state-of-the-art density functional theory simulations, we unveil the mechanistic features and energetics of Sn(II) → Sn(IV) oxidation in pristine and defective models. Surprisingly, tin oxidation is predicted to be considerably unfavorable in bulk MASnI3 while it is energetically favored at unpassivated perovskite surfaces. As a consequence, bulk Sn(IV) spontaneously transforms into Sn(II), releasing two holes to the valence band and p-doping the perovskite, while surface Sn(IV) acts as a deep electron trap and contributes to nonradiative carrier recombination. The stoichiometry and the valence band surface pinning are found to largely influence the formation of Sn(IV), pointing to surface passivation as the main strategy to obtain efficient and stable tin halide solar cells
- …