7,105 research outputs found
Exploring Financial Microblogs: Analysis of Users' Trading Profiles with Multivariate Statistical Methods
StockTwits is a Social Media focused on finance that is receiving increasing attention from finance experts and enthusiasts. In this work, StockTwitsâ users are studied considering some of their self-declared characteristics, such as trading experience, holding period of the stocks, and trading approach. A Correspondence Analysis is carried out to investigate the relationships among these characteristics, the Simple Correspondence Analysis is applied to study the relationships between the approach and the holding period. The association between these variables and the experience is studied with the Multiple Correspondence Analysis. In the end, a cluster analysis carried out with hierarchical clustering is used to study the structure of the StockTwits community on the basis of the same characteristics. The analyses highlighted that the way users label their own approach and primary holding period reflect the objective relation linking technical strategy with short-term investments and fundamental approach with long-term ones. Moreover, it showed a weak relation of the experience in trading with the other features, configuring self-reported experience as a more cross-sectional characteristic
The brain: What is critical about it?
We review the recent proposal that the most fascinating brain properties are
related to the fact that it always stays close to a second order phase
transition. In such conditions, the collective of neuronal groups can reliably
generate robust and flexible behavior, because it is known that at the critical
point there is the largest abundance of metastable states to choose from. Here
we review the motivation, arguments and recent results, as well as further
implications of this view of the functioning brain.Comment: Proceedings of BIOCOMP2007 - Collective Dynamics: Topics on
Competition and Cooperation in the Biosciences. Vietri sul Mare, Italy (2007
Auto and crosscorrelograms for the spike response of LIF neurons with slow synapses
An analytical description of the response properties of simple but realistic
neuron models in the presence of noise is still lacking. We determine
completely up to the second order the firing statistics of a single and a pair
of leaky integrate-and-fire neurons (LIFs) receiving some common slowly
filtered white noise. In particular, the auto- and cross-correlation functions
of the output spike trains of pairs of cells are obtained from an improvement
of the adiabatic approximation introduced in \cite{Mor+04}. These two functions
define the firing variability and firing synchronization between neurons, and
are of much importance for understanding neuron communication.Comment: 5 pages, 3 figure
Metabolic reprogramming promotes myogenesis during aging
Sarcopenia is the age-related progressive loss of skeletal muscle mass and strength finally leading to poor physical performance. Impaired myogenesis contributes to the pathogenesis of sarcopenia, while mitochondrial dysfunctions are thought to play a primary role in skeletal muscle loss during aging. Here we studied the link between myogenesis and metabolism. In particular, we analyzed the effect of the metabolic modulator trimetazidine (TMZ) on myogenesis in aging. We show that reprogramming the metabolism by TMZ treatment for 12 consecutive days stimulates myogenic gene expression in skeletal muscle of 22-month-old mice. Our data also reveal that TMZ increases the levels of mitochondrial proteins and stimulates the oxidative metabolism in aged muscles, this finding being in line with our previous observations in cachectic mice. Moreover, we show that, besides TMZ also other types of metabolic modulators (i.e., 5-Aminoimidazole-4-Carboxamide Ribofuranoside-AICAR) can stimulate differentiation of skeletal muscle progenitors in vitro. Overall, our results reveal that reprogramming the metabolism stimulates myogenesis while triggering mitochondrial proteins synthesis in vivo during aging. Together with the previously reported ability of TMZ to increase muscle strength in aged mice, these new data suggest an interesting non-invasive therapeutic strategy which could contribute to improving muscle quality and neuromuscular communication in the elderly, and counteracting sarcopenia
Permeability characterization of stitched carbon fiber preforms by fiber optic sensors
The in-plane and through thickness permeability of unidirectional stitched carbon fiber preforms have been determined through vacuum infusion tests. The impregnation of various dry preforms with different stitching characteristics has been monitored by fiber optic sensors that have been stitched together with the dry tow to manufacture the dry preform. The experimental infusion times have been fitted by a numerical procedure based on Finite Element (FE) processing simulations. A good agreement between the numerical and experimental infusion times has been found demonstrating the potentiality of the fiber sensor system as suitable tool to evaluate impregnation times and permeability characteristics
A field study on thermal comfort in naturally - ventilated buildings located in the equatorial climatic region of Cameroon
The purpose of this research is to create a thermal comfort data base in three climatic regions in Cameroon. This will help to define guidelines for constructing more comfortable buildings in Cameroon. There is not enough data regarding comfort in residential environment in the inter tropical sub Saharan Africa.
Thus experimental and subjective results of hygrometric thermal comfort conducted in 290 buildings located in three cities of the equatorial climatic zone of Cameroon is presented. An adaptive approach according to ASHRAE55/2004, ISO7730 and 10551 was adopted. A specific questionnaire has been elaborated for the investigation. 710 questionnaires in the dry season and 410 in the rainy season were distributed to inhabitants and filled while different experimental value of indoor parameters were measured. The comfortable temperature ranges for the three cities was found between 22. 1 C and 29.1 C. The 61.24 % of voters found acceptable their thermal habitat, the 13.72% considered it neutral
Estimation of semiconductor-like pigment concentrations in paint mixtures and their differentiation from paint layers using first-derivative reflectance spectra.
Identification of the techniques employed by artists, e.g. mixing and layering of paints, if used together with information about their colour palette and style, can help to attribute works of art with more confidence. In this study, we show how the pigment composition in binary paint mixtures can be quantified using optical-reflectance spectroscopy, by analysis of the peak features corresponding to colour-transition edges in the first-derivative spectra. This technique is found to be more robust than a number of other spectral-analysis methods, which can suffer due to shifts in the transition edges in mixed paints compared to those observed in spectra of pure ones. Our method also provides a means of distinguishing paint mixtures from layering in some cases. The spectroscopy also shows the presence of multiple electronic transitions, accessible within a narrow energy range, to be a common feature of many coloured pigments, which electronic-structure calculations attribute to shallow band edges. We also demonstrate the successful application of the reflectance-analysis technique to painted areas on a selection of medieval illuminated manuscripts.ARP is indebted to St. Johnâs College, Cambridge for providing a scholarship to fund this study, and to ASD Inc. (through the Alexander Goetz programme) and Analytik UK Ltd. for the loan of a Fieldspec 4 spectroradiometer for the completion of this work. JMS is indebted to Trinity College, Cambridge for provision of an Internal Graduate Studentship, and to the UK Engineering and Physical Sciences Research Council (EPSRC) for support under grant no. EP/K004956/1. The computational modelling was performed on the UK national HPC facility (Archer), accessed through the Materials Chemistry Consortium, which is funded through EPSRC grant no. EP/L000202.This is the final version of the article. It first appeared from Elsevier via https://doi.org/10.1016/j.talanta.2016.03.05
Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model
We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of
neuronal action potentials, in parameter regimes characterised by mixed-mode
oscillations. The interspike time interval is related to the random number of
small-amplitude oscillations separating consecutive spikes. We prove that this
number has an asymptotically geometric distribution, whose parameter is related
to the principal eigenvalue of a substochastic Markov chain. We provide
rigorous bounds on this eigenvalue in the small-noise regime, and derive an
approximation of its dependence on the system's parameters for a large range of
noise intensities. This yields a precise description of the probability
distribution of observed mixed-mode patterns and interspike intervals.Comment: 36 page
Are supramodality and cross-modal plasticity the yin and yang of brain development? From blindness to rehabilitation
Research in blind individuals has primarily focused for a long time on the brain plastic reorganization that occurs in early visual areas. Only more recently, scientists have developed innovative strategies to understand to what extent vision is truly a mandatory prerequisite for the brainâs fine morphological architecture to develop and function. As a whole, the studies conducted to date in sighted and congenitally blind individuals have provided ample evidence that several âvisualâ cortical areas develop independently from visual experience and do process information content regardless of the sensory modality through which a particular stimulus is conveyed: a property named supramodality. At the same time, lack of vision leads to a structural and functional reorganization within 'visual' brain areas, a phenomenon known as cross-modal plasticity. Cross-modal recruitment of the occipital cortex in visually deprived individuals represents an adaptative compensatory mechanism that mediates processing of non-visual inputs. Supramodality and cross-modal plasticity appear to be the 'yin and yang' of brain development: supramodal is what takes place despite the lack of vision, whereas cross-modal is what happens because of lack of vision. Here we provide a critical overview of the research in this field and discuss the implications that these novel findings have for the development of educative/rehabilitation approaches and sensory substitution devices in sensory-impaired individuals
- âŠ