17,129 research outputs found

    A molecular dynamics simulation of water confined in a cylindrical SiO2 pore

    Full text link
    A molecular dynamics simulation of water confined in a silica pore is performed in order to compare it with recent experimental results on water confined in porous Vycor glass at room temperature. A cylindrical pore of 40 A is created inside a vitreous SiO2 cell, obtained by computer simulation. The resulting cavity offers to water a rough hydrophilic surface and its geometry and size are similar to those of a typical pore in porous Vycor glass. The site-site distribution functions of water inside the pore are evaluated and compared with bulk water results. We find that the modifications of the site-site distribution functions, induced by confinement, are in qualitative agreement with the recent neutron diffraction experiment, confirming that the disturbance to the microscopic structure of water mainly concerns orientational arrangement of neighbouring molecules. A layer analysis of MD results indicates that, while the geometrical constraint gives an almost constant density profile up to the layers closest to the interface, with an uniform average number of hydrogen bonds (HB), the hydrophilic interaction produces the wetting of the pore surface at the expenses of the adjacent water layers. Moreover the orientational disorder togheter with a reduction of the average number of HB persists in the layers close to the interface, while water molecules cluster in the middle of the pore at a density and with a coordination similar to bulk water.Comment: RevTex, 11 pages, 12 figures; to appear in June 15 issue of J. Chem. Phy

    A model for liquid-striped liquid phase separation in liquids of anisotropic polarons

    Full text link
    The phase separation between a striped polaron liquid at the particular density and a high density polaron liquid is described by a modified Van der Waals scheme. The striped polaron liquid represents the pseudo gap matter or Wigner-like polaron phase at 1/8 doping in cuprate superconductors. The model includes the tendency of pseudo- Jahn-Teller polarons to form anisotropic directional bonds at a preferential volume with the formation of different liquid phases. The model gives the coexistence of a first low density polaron striped liquid and a second high density liquid that appears in cuprate superconductors for doping larger than 1/8. We discuss how the strength of anisotropic bonds controls the variation the phase separation scenarios for complex systems in the presence of a quantum critical point where the phase separation vanishes.Comment: 10 pages, 3 figure

    Influence of the Lower Hybrid Drift Instability on the onset of Magnetic Reconnection

    Full text link
    Two-dimensional and three-dimensional kinetic simulation results reveal the importance of the Lower-Hybrid Drift Instability LHDI to the onset of magnetic reconnection. Both explicit and implicit kinetic simulations show that the LHDI heats electrons anisotropically and increases the peak current density. Linear theory predicts these modifications can increase the growth rate of the tearing instability by almost two orders of magnitude and shift the fastest growing modes to significantly shorter wavelengths. These predictions are confirmed by nonlinear kinetic simulations in which the growth and coalescence of small scale magnetic islands leads to a rapid onset of large scale reconnection

    BeppoSAX LECS background subtraction techniques

    Full text link
    We present 3 methods for the subtraction of non-cosmic and unresolved cosmic backgrounds observed by the Low-Energy Concentrator Spectrometer (LECS) on-board BeppoSAX. Removal of these backgrounds allows a more accurate modeling of the spectral data from point and small-scale extended sources. At high (>|25| degree) galactic latitudes, subtraction using a standard background spectrum works well. At low galactic latitudes, or in complex regions of the X-ray sky, two alternative methods are presented. The first uses counts obtained from two semi-annuli near the outside of the LECS field of view to estimate the background at the source location. The second method uses ROSAT Position Sensitive Proportional Counter (PSPC) all-sky survey data to estimate the LECS background spectrum for a given pointing position. A comparison of the results from these methods provides an estimate of the systematic uncertainties. For high galactic latitude fields, all 3 methods give 3 sigma confidence uncertainties of <0.9 10^-3 count/s (0.1-10 keV), or <1.5 10^-3 count/s (0.1-2 keV). These correspond to 0.1-2.0 keV fluxes of 0.7-1.8 and 0.5-1.1 10^-13 erg/cm2/s for a power-law spectrum with a photon index of 2 and photoelectric absorption of 3 10^20 and 3 10^21 atom/cm2, respectively. At low galactic latitudes, or in complex regions of the X-ray sky, the uncertainties are a factor ~2.5 higher.Comment: 13 pages. Accepted for publication in A&A

    Hiding solutions in random satisfiability problems: A statistical mechanics approach

    Full text link
    A major problem in evaluating stochastic local search algorithms for NP-complete problems is the need for a systematic generation of hard test instances having previously known properties of the optimal solutions. On the basis of statistical mechanics results, we propose random generators of hard and satisfiable instances for the 3-satisfiability problem (3SAT). The design of the hardest problem instances is based on the existence of a first order ferromagnetic phase transition and the glassy nature of excited states. The analytical predictions are corroborated by numerical results obtained from complete as well as stochastic local algorithms.Comment: 5 pages, 4 figures, revised version to app. in PR
    • …
    corecore