225 research outputs found
SHE based Non Interactive Privacy Preserving Biometric Authentication Protocols
Being unique and immutable for each person, biometric signals are widely used in access control systems. While biometric recognition appeases concerns about password's theft or loss, at the same time it raises concerns about individual privacy. Central servers store several enrolled biometrics, hence security against theft must be provided during biometric transmission and against those who have access to the database. If a server's database is compromised, other systems using the same biometric templates could also be compromised as well. One solution is to encrypt the stored templates. Nonetheless, when using traditional cryptosystem, data must be decrypted before executing the protocol, leaving the database vulnerable. To overcame this problem and protect both the server and the client, biometrics should be processed while encrypted. This is possible by using secure two-party computation protocols, mainly based on Garbled Circuits (GC) and additive Homomorphic Encryption (HE). Both GC and HE based solutions are efficient yet interactive, meaning that the client takes part in the computation. Instead in this paper we propose a non-interactive protocol for privacy preserving biometric authentication based on a Somewhat Homomorphic Encryption (SHE) scheme, modified to handle integer values, and also suggest a blinding method to protect the system from spoofing attacks. Although our solution is not as efficient as the ones based on GC or HE, the protocol needs no interaction, moving the computation entirely on the server side and leaving only inputs encryption and outputs decryption to the client
Privacy-Aware Processing of Biometric Templates by Means of Secure Two-Party Computation
The use of biometric data for person identification and access control is gaining more and more popularity. Handling biometric data, however, requires particular care, since biometric data is indissolubly tied to the identity of the owner hence raising important security and privacy issues. This chapter focuses on the latter, presenting an innovative approach that, by relying on tools borrowed from Secure Two Party Computation (STPC) theory, permits to process the biometric data in encrypted form, thus eliminating any risk that private biometric information is leaked during an identification process. The basic concepts behind STPC are reviewed together with the basic cryptographic primitives needed to achieve privacy-aware processing of biometric data in a STPC context. The two main approaches proposed so far, namely homomorphic encryption and garbled circuits, are discussed and the way such techniques can be used to develop a full biometric matching protocol described. Some general guidelines to be used in the design of a privacy-aware biometric system are given, so as to allow the reader to choose the most appropriate tools depending on the application at hand
ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks
The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation.
In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices
ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks
The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation.
In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices
Building Regular Registers with Rational Malicious Servers and Anonymous Clients
The paper addresses the problem of emulating a regular register in a synchronous distributed system where clients invoking and operations are anonymous while server processes maintaining the state of the register may be compromised by rational adversaries (i.e., a server might behave as rational malicious Byzantine process). We first model our problem as a Bayesian game between a client and a rational malicious server where the equilibrium depends on the decisions of the malicious server (behave correctly and not be detected by clients vs returning a wrong register value to clients with the risk of being detected and then excluded by the computation). We prove such equilibrium exists and finally we design a protocol implementing the regular register that forces the rational malicious server to behave correctly
PADS: Practical Attestation for Highly Dynamic Swarm Topologies
Remote attestation protocols are widely used to detect device configuration
(e.g., software and/or data) compromise in Internet of Things (IoT) scenarios.
Unfortunately, the performances of such protocols are unsatisfactory when
dealing with thousands of smart devices. Recently, researchers are focusing on
addressing this limitation. The approach is to run attestation in a collective
way, with the goal of reducing computation and communication. Despite these
advances, current solutions for attestation are still unsatisfactory because of
their complex management and strict assumptions concerning the topology (e.g.,
being time invariant or maintaining a fixed topology). In this paper, we
propose PADS, a secure, efficient, and practical protocol for attesting
potentially large networks of smart devices with unstructured or dynamic
topologies. PADS builds upon the recent concept of non-interactive attestation,
by reducing the collective attestation problem into a minimum consensus one. We
compare PADS with a state-of-the art collective attestation protocol and
validate it by using realistic simulations that show practicality and
efficiency. The results confirm the suitability of PADS for low-end devices,
and highly unstructured networks.Comment: Submitted to ESORICS 201
Anonymous subject identification and privacy information management in video surveillance
The widespread deployment of surveillance cameras has raised serious privacy concerns, and many privacy-enhancing schemes have been recently proposed to automatically redact images of selected individuals in the surveillance video for protection. Of equal importance are the privacy and efficiency of techniques to first, identify those individuals for privacy protection and second, provide access to original surveillance video contents for security analysis. In this paper, we propose an anonymous subject identification and privacy data management system to be used in privacy-aware video surveillance. The anonymous subject identification system uses iris patterns to identify individuals for privacy protection. Anonymity of the iris-matching process is guaranteed through the use of a garbled-circuit (GC)-based iris matching protocol. A novel GC complexity reduction scheme is proposed by simplifying the iris masking process in the protocol. A user-centric privacy information management system is also proposed that allows subjects to anonymously access their privacy information via their iris patterns. The system is composed of two encrypted-domain protocols: The privacy information encryption protocol encrypts the original video records using the iris pattern acquired during the subject identification phase; the privacy information retrieval protocol allows the video records to be anonymously retrieved through a GC-based iris pattern matching process. Experimental results on a public iris biometric database demonstrate the validity of our framework
Security and Privacy of IP-ICN Coexistence: A Comprehensive Survey
Internet usage has changed from its first design. Hence, the current Internet
must cope with some limitations, including performance degradation,
availability of IP addresses, and multiple security and privacy issues.
Nevertheless, to unsettle the current Internet's network layer i.e., Internet
Protocol with ICN is a challenging, expensive task. It also requires worldwide
coordination among Internet Service Providers , backbone, and Autonomous
Services. Additionally, history showed that technology changes e.g., from 3G to
4G, from IPv4 to IPv6 are not immediate, and usually, the replacement includes
a long coexistence period between the old and new technology. Similarly, we
believe that the process of replacement of the current Internet will surely
transition through the coexistence of IP and ICN. Although the tremendous
amount of security and privacy issues of the current Internet taught us the
importance of securely designing the architectures, only a few of the proposed
architectures place the security-by-design. Therefore, this article aims to
provide the first comprehensive Security and Privacy analysis of the
state-of-the-art coexistence architectures. Additionally, it yields a
horizontal comparison of security and privacy among three deployment approaches
of IP and ICN protocol i.e., overlay, underlay, and hybrid and a vertical
comparison among ten considered security and privacy features. As a result of
our analysis, emerges that most of the architectures utterly fail to provide
several SP features including data and traffic flow confidentiality,
availability and communication anonymity. We believe this article draws a
picture of the secure combination of current and future protocol stacks during
the coexistence phase that the Internet will definitely walk across
- …