241 research outputs found
On the skeleton method and an application to a quantum scissor
In the spectral analysis of few one dimensional quantum particles interacting
through delta potentials it is well known that one can recast the problem into
the spectral analysis of an integral operator (the skeleton) living on the
submanifold which supports the delta interactions. We shall present several
tools which allow direct insight into the spectral structure of this skeleton.
We shall illustrate the method on a model of a two dimensional quantum particle
interacting with two infinitely long straight wires which cross one another at
a certain angle : the quantum scissor.Comment: Submitte
Rigorous perturbation theory versus variational methods in the spectral study of carbon nanotubes
Recent two-photon photo-luminescence experiments give accurate data for the
ground and first excited excitonic energies at different nanotube radii. In
this paper we compare the analytic approximations proved in \cite{CDR}, with a
standard variational approach. We show an excellent agreement at sufficiently
small radii.Comment: Accepted for publication in Contemporary Mathematic
A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation
This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO) continuity equation. This linear scheme (hereinafter noted LINCO) has been implemented in the 3-D Chemical Transport Model (CTM) MOCAGE (MOdèle de Chimie Atmospherique Grande Echelle). First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about ±25 ppbv (part per billion by volume) or 15% in the troposphere and ±10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT) and the stratosphere (Microwave Limb Sounder: MLS) and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme) mostly flying in the upper troposphere and lower stratosphere (UTLS). In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 Pa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time) method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics. This study confirms that the linear scheme is able to simulate reasonably well the CO distribution in the troposphere and in the lower stratosphere. Therefore, the low computing cost of the linear scheme opens new perspectives to make free runs and CO data assimilation runs at high resolution and over periods of several years
An optimally concentrated Gabor transform for localized time-frequency components
Gabor analysis is one of the most common instances of time-frequency signal
analysis. Choosing a suitable window for the Gabor transform of a signal is
often a challenge for practical applications, in particular in audio signal
processing. Many time-frequency (TF) patterns of different shapes may be
present in a signal and they can not all be sparsely represented in the same
spectrogram. We propose several algorithms, which provide optimal windows for a
user-selected TF pattern with respect to different concentration criteria. We
base our optimization algorithm on -norms as measure of TF spreading. For
a given number of sampling points in the TF plane we also propose optimal
lattices to be used with the obtained windows. We illustrate the potentiality
of the method on selected numerical examples
SPIRAL facility at GANIL : ion beam simulation and optimisation method for the CIME cyclotron injection system
International audienc
Supercooled liquid water cloud observed, analysed, and modelled at the top of the planetary boundary layer above Dome C, Antarctica
Abstract. A comprehensive analysis of the water budget over the Dome C (Concordia,
Antarctica) station has been performed during the austral summer 2018–2019
as part of the Year of Polar Prediction (YOPP) international campaign. Thin
(∼100 m deep) supercooled liquid water (SLW) clouds have been
detected and analysed using remotely sensed observations at the station
(tropospheric depolarization lidar, the H2O Antarctica Microwave Stratospheric and Tropospheric
Radiometer (HAMSTRAD), net
surface radiation from the Baseline Surface Radiation Network (BSRN)), radiosondes, and satellite observations (CALIOP, Cloud-Aerosol LIdar with Orthogonal Polarization/CALIPSO, Cloud Aerosol Lidar and Infrared
Pathfinder Satellite Observations) combined with a specific
configuration of the numerical weather prediction model: ARPEGE-SH (Action
de Recherche Petite Echelle Grande Echelle – Southern Hemisphere). The
analysis shows that SLW clouds were present from November to March, with the
greatest frequency occurring in December and January when ∼50 % of the days in summer time exhibited SLW clouds for at least 1 h. Two case studies are used to illustrate this phenomenon. On 24 December 2018, the atmospheric planetary boundary layer (PBL) evolved
following a typical diurnal variation, which is to say with a warm and dry
mixing layer at local noon thicker than the cold and dry stable layer at
local midnight. Our study showed that the SLW clouds were observed at Dome C
within the entrainment and the capping inversion zones at the top of the
PBL. ARPEGE-SH was not able to correctly estimate the ratio between liquid
and solid water inside the clouds with the liquid water path (LWP) strongly
underestimated by a factor of 1000 compared to observations. The lack of
simulated SLW in the model impacted the net surface radiation that was 20–30 W m−2 higher in the BSRN observations than in the ARPEGE-SH
calculations, mainly attributable to the BSRN longwave downward surface
radiation being 50 W m−2 greater than that of ARPEGE-SH. The second
case study took place on 20 December 2018, when a warm and wet episode
impacted the PBL with no clear diurnal cycle of the PBL top. SLW cloud
appearance within the entrainment and capping inversion zones coincided with
the warm and wet event. The amount of liquid water measured by HAMSTRAD was
∼20 times greater in this perturbed PBL than in the typical
PBL. Since ARPEGE-SH was not able to accurately reproduce these SLW clouds,
the discrepancy between the observed and calculated net surface radiation
was even greater than in the typical PBL case, reaching +50 W m−2,
mainly attributable to the downwelling longwave surface radiation from BSRN
being 100 W m−2 greater than that of ARPEGE-SH. The model was then run
with a new partition function favouring liquid water for temperatures below
−20 down to −40 ∘C. In this test mode, ARPEGE-SH has
been able to generate SLW clouds with modelled LWP and net surface radiation
consistent with observations during the typical case, whereas, during the
perturbed case, the modelled LWP was 10 times less than the observations and
the modelled net surface radiation remained lower than the observations by
∼50 W m−2. Accurately modelling the presence of SLW
clouds appears crucial to correctly simulate the surface energy budget over
the Antarctic Plateau
Nighttime chlorine monoxide observations by the Odin satellite and implications for the ClO/Cl2O2 equilibrium
We use measurements of chlorine monoxide (ClO) by the SMR instrument onboard the Odin satellite to study the nighttime thermal equilibrium between ClO and its dimer Cl2O2. Observations performed in the polar vortex during the 2002–2003 Arctic winter showed enhanced amounts of nighttime ClO over a wide range of stratospheric temperatures (185 < T < 225 K). Odin/SMR measurements are here compared to three-dimensional model calculations using various published estimations of the Keq equilibrium constant between ClO and Cl2O2. Our results show that the value of Keq currently recommended by JPL (Sander et al., 2003) leads to a large underestimation of the observed nighttime ClO amounts, and that a realistic estimation of Keq must lie between the values determined by Cox and Hayman (1988) and Von Hobe et al. (2005)
A new chemistry-climate tropospheric and stratospheric model MOCAGE-Climat: evaluation of the present-day climatology and sensitivity to surface processes
International audienceWe present the chemistry-climate configuration of the Météo-France Chemistry and Transport Model, MOCAGE-Climat. MOCAGE-Climat is a state-of-the-art model that simulates the global distribution of ozone and its precursors (82 chemical species) both in the troposphere and the stratosphere, up to the mid-mesosphere (~70 km). Surface processes (emissions, dry deposition), convection, and scavenging are explicitly described in the model that has been driven by the ECMWF operational analyses of the period 2000–2005, on T21 and T42 horizontal grids and 60 hybrid vertical levels, with and without a procedure that reduces calculations in the boundary layer, and with on-line or climatological deposition velocities. Model outputs have been compared to available observations, both from satellites (TOMS, HALOE, SMR, SCIAMACHY, MOPITT) and in-situ instrument measurements (ozone sondes, MOZAIC and aircraft campaigns) at climatological timescales. The distribution of long-lived species is in fair agreement with observations in the stratosphere putting apart shortcomings linked to the large-scale circulation. The variability of the ozone column, both spatially and temporarily, is satisfactory. However, the too fast Brewer-Dobson circulation accumulates too much ozone in the lower to mid-stratosphere at the end of winter. Ozone in the UTLS region does not show any systematic bias. In the troposphere better agreement with ozone sonde measurements is obtained at mid and high latitudes than in the tropics and differences with observations are the lowest in summer. Simulations using a simplified boundary layer lead to ozone differences between the model and the observations up to the mid-troposphere. NOx in the lowest troposphere is in general overestimated, especially in the winter months over the northern hemisphere, which might result from a positive bias in OH. Dry deposition fluxes of O3 and nitrogen species are within the range of values reported by recent inter-comparison model exercises. The use of climatological deposition velocities versus deposition velocities calculated on-line had greatest impact on HNO3 and NO2 in the troposphere
Midlatitude stratosphere - troposphere exchange as diagnosed by MLS O3 and MOPITT CO assimilated fields
International audienceThis paper presents a comprehensive characterization of a very deep stratospheric intrusion which occurred over the British Isles on 15 August 2007. The signature of this event is diagnosed using ozonesonde measurements over Lerwick, UK (60.14 N, 1.19 W) and is also well characterized using meteorological analyses from the global operational weather prediction model of Météo-France, ARPEGE. Modelled as well as assimilated fields of both ozone (O3) and carbon monoxide (CO) have been used in order to better document this event. O3 and CO from Aura/MLS and Terra/MOPITT instruments, respectively, are assimilated into the three-dimensional chemical transport model MOCAGE of Météo-France using a variational 3-DFGAT (First Guess at Appropriate Time) method. The validation of O3 and CO assimilated fields is done using selfconsistency diagnostics and by comparison with independent observations such as MOZAIC (O3 and CO), AIRS (CO) and OMI (O3). It particularly shows in the upper troposphere and lower stratosphere region that the assimilated fields are closer to MOZAIC than the free model run. The O3 bias between MOZAIC and the analyses is −11.5 ppbv with a RMS of 22.4 ppbv and a correlation coefficient of 0.93, whereas between MOZAIC and the free model run, the corresponding values are 33 ppbv, 38.5 ppbv and 0.83, respectively. In the same way, for CO, the bias, RMS and correlation coefficient between MOZAIC and the analyses are −3.16 ppbv, 13 ppbv and 0.79, respectively, whereas between MOZAIC and the free model run, the corresponding values are 33 ppbv, 38.5 ppbv and 0.83, respectively. In the same way, for CO, the bias, RMS and correlation coefficient between MOZAIC and the analyses are −3.16 ppbv, 13 ppbv and 0.79, respectively, whereas between MOZAIC and the free model they are 6.3 ppbv, 16.6 ppbv and 0.71, respectively. The paper also presents a demonstration of the capability of O3 and CO assimilated fields to better describe a stratosphere-troposphere exchange (STE) event in comparison with the free run modelled O3 and CO fields. Although the assimilation of MLS data improves the distribution of O3 above the tropopause compared to the free model run, it is not sufficient to reproduce the STE event well. Assimilated MOPITT CO allows a better qualitative description of the stratospheric intrusion event. The MOPITT CO analyses appear more promising than the MLS O3 analyses in terms of their ability to capture a deep STE event. Therefore, the results of this study open the perspectives for using MOPITT CO in the STE studies
- …