15 research outputs found
Status assessment of the Critically Endangered Azores Bullfinch Pyrrhula murina
13 páginas, 4 figuras, 1 tabla.The Azores Bullfinch is endemic to the island of São Miguel (Azores, Portugal). Its status was uplisted to Critically Endangered in 2005 on the basis of an extremely small and declining population that was considered to be restricted to a very small mountain range (43 km2), in a single location, within which the spread of invasive plants constituted a threat to habitat quality. Nevertheless, information was mostly inferred, or the product of, non-systematic studies. In order to carry out a complete assessment of the conservation status we analysed: (i) population trend, calculated from annual monitoring 1991–2008, (ii) population size, and (iii) range size, obtaining estimates in a single morning study in 2008 involving the simultaneous participation of 48 observers. Contrary to previous inferences, the population is no longer decreasing, although quality of laurel forest habitat continues to decline due to the persistent threat of invasive species. Population size (mean ± SE) was estimated at 1,064 ± 304 individuals using distance sampling methods, although the estimate was very sensitive to the survey method used. Range size estimates (extent of occurrence and area of occupancy) were 144 km2 and 83 km2 respectively. Given the present information, we propose the downlisting of Azores Bullfinch to Endangered on the IUCN Red List.Este trabajo fue parte del programa "Azores Bullfinch monitoring" incluído en el proyecto de la Comisión Europea, LIFE NAT/P/000013 “Recovery of Azores Bullfinch’s habitat in the Special Protection Area of Pico da Vara / Ribeira do Guilherme”.Peer reviewe
How Many Azores Bullfinches (Pyrrhula murina) Are There in the World? Case Study of a Threatened Species
The Azores bullfinch (Pyrrhula murina Godman, 1866) is a rare Passeriformes endemic from the eastern part of São Miguel Island, Azores, Portugal. This bird was almost considered extinct in the first half of the 20th century, but due to recent conservation measures, it has experienced a recovery since the beginning of the 2000s. Despite the attention given to this bird, the size of its population is still controversial, and the most recent studies present significant divergences on this behalf. The purpose of the present study is to present data from the long-term monitoring and results of the third single-morning survey of the Azores bullfinch to update information about the population size and range of this species. In addition, we performed a literature review to highlight the limitations and advantages of the different approaches for monitoring this species. The Azores Bullfinch records during the single-morning survey indicated a reduction in the extent of occurrence and area of occupancy of this species in comparison with the previous studies, despite the increase in bird detection. However, we suggest that the distribution range of this species needs further analysis concerning its area to exclude non suitable habitats from this analysis. In this study, we conclude that the most likely size of the Azores bullfinch population is 500 to 800 couples, with a slow population growth tendency and an area of distribution of 136.5 km2.info:eu-repo/semantics/publishedVersio
Show your beaks and we tell you what you eat: Different ecology in sympatric Antarctic benthic octopods under a climate change context
Sympatry can lead to higher competition under climate change and other environmental pressures, including in South Georgia, Antarctica, where the two most common octopod species, Adelieledone polymorpha and Pareledone turqueti, occur side by side. Since cephalopods are typically elusive animals, the ecology of both species is poorly known. As beaks of cephalopods are recurrently found in top predator's stomachs, we studied the feeding ecology of both octopods through the evaluation of niche overlapping and specific beak adaptations that both species present. A multidisciplinary approach combining carbon (δ13C) and nitrogen (δ15N) stable isotope signatures, mercury (Hg) analysis and biomaterials' engineering techniques was applied to investigate the beaks. An isotopic niche overlap of 95.6% was recorded for the juvenile stages of both octopod species, dropping to 19.2% for the adult stages. Both A. polymorpha and P. turqueti inhabit benthic ecosystems around South Georgia throughout their lifecycles (δ13C: −19.21 ± 1.87‰, mean ± SD for both species) but explore trophic niches partially different during adult life stages (δ15N: 7.01 ± 0.40‰, in A. polymorpha, and 7.84 ± 0.65‰, in P. turqueti). The beaks of A. polymorpha are less dense and significantly less stiff than in P. turqueti. Beaks showed lower mercury concentration relative to muscle (A. polymorpha - beaks: 0.052 ± 0.009 μg g−1, muscle: 0.322 ± 0.088 μg g−1; P. turqueti - beaks: 0.038 ± 0.009 μg g−1; muscle: 0.434 ± 0.128 μg g−1). Overall, both octopods exhibit similar habitats but different trophic niches, related to morphology/function of beaks. The high Hg concentrations in both octopods can have negative consequences on their top predators and may increase under the present climate change context.British Antarctic Survey for assisting in the collection of the specimens for this work. Many thanks to 3B's Research Group (University of Minho) and MAREFOZ who were responsible for analysing the physical properties of beaks and stable isotope signatures. A special thank you to our colleague José Queirós from MARE-UC (Coimbra, Portugal) for his suggestions and guidance. A debt of gratitude is also owed to Dr. A. Louise Allcock (NUI Galway) for her useful guidelines. This work is an international effort under the Scientific Committee on Antarctic Research (SCAR) associated programs, expert and action groups, namely SCAR AnT-ERA, SCAR EGBAMM and ICED. J.C. Xavier was supported by the Investigator Programme (IF/00616/2013) of the Foundation for Science and Technology (FCT-Portugal) and PROPOLAR, and F.R. Ceia was supported by a postdoctoral fellowship (SFRH/BPD/95372/2013) attributed by FCT-Portugal and the European Social Fund (POPH, EU). This study benefited from the strategic program of MARE, financed by FCT-Portugal (MARE- UID/MAR/04292/2019). We also acknowledge FCT-Portugal through a PhD grant to J. Seco (SRFH/PD/BD/113487
Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs.Fil: Christie, Alec P.. University of Cambridge; Reino UnidoFil: Abecasis, David. Universidad de Algarve. Centro de Ciencias del Mar; PortugalFil: Adjeroud, Mehdi. Université de Perpignan; Francia. Institut de Recherche Pour Le Developpement; FranciaFil: Alonso, Juan Carlos. Consejo Superior de Investigaciones Científicas. Museo Nacional de Ciencias Naturales; EspañaFil: Amano, Tatsuya. University of Queensland; AustraliaFil: Anton, Alvaro. Universidad del País Vasco. Facultad de Educación de Bilbao; EspañaFil: Baldigo, Barry P.. United States Geological Survey; Estados UnidosFil: Barrientos, Rafael. Universidad Complutense de Madrid; EspañaFil: Bicknell, Jake E.. University of Kent; Reino UnidoFil: Buhl, Deborah A.. United States Geological Survey; Estados UnidosFil: Cebrian, Just. Mississippi State University; Estados UnidosFil: Ceia, Ricardo S.. Universidad de Coimbra; PortugalFil: Cibils Martina, Luciana. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas, Fisicoquímicas y Naturales. Departamento de Ciencias Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaFil: Clarke, Sarah. Marine Institute; IrlandaFil: Claudet, Joachim. Universite de Paris; Francia. Centre National de la Recherche Scientifique; FranciaFil: Craig, Michael D.. University of Western Australia; Australia. Murdoch University; AustraliaFil: Davoult, Dominique. Sorbonne University; FranciaFil: De Backer, Annelies. Flanders Research Institute for Agriculture, Fisheries and Food; BélgicaFil: Donovan, Mary K.. University of California; Estados Unidos. University of Hawaii at Manoa; Estados UnidosFil: Eddy, Tyler D.. University of South Carolina; Estados Unidos. Memorial University of Newfoundland; Canadá. Victoria University of Wellington; Nueva ZelandaFil: França, Filipe M.. Lancaster University; Reino UnidoFil: Gardner, Jonathan P. A.. Victoria University of Wellington; Nueva ZelandaFil: Harris, Bradley P.. Alaska Pacific University; Estados UnidosFil: Huusko, Ari. Natural Resources Institute Finland; FinlandiaFil: Jones, Ian L.. Memorial University of Newfoundland; CanadáFil: Kelaher, Brendan P.. Southern Cross University; AustraliaFil: Kotiaho, Janne S.. Universidad de Jyvaskyla; FinlandiaFil: López Baucells, Adrià. Universidad de Lisboa; Portugal. Smithsonian Tropical Research Institute; Panamá. Universidad Nacional de Colombia. Instituto de Investigaciones Amazonicas; Colombia. Museo de Ciencias Naturales de Granollers; EspañaFil: Major, Heather L.. University of New Brunswick; CanadáFil: Mäki Petäys, Aki. Voimalohi Oy; Finlandia. University of Oulu; Finlandi
Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
Abstract: Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs
Factors determining the occupancy of nest-boxes by Great Tits (Parus major) in eucalypt plantations
Providing nest-boxes as surrogate tree cavities can be of great importance to increase the breeding populations of cavity-nesting birds in managed forests. However, the exact placement of nest-boxes should be taken into consideration to enhance their occupancy according to species-specific preferences. In this study, we investigated which factors can better predict nest-box occupancy by the Great Tit (Parus major) in eucalypt plantations. We used generalised linear mixed-effects models to analyse the influence of topography, nest-box positioning, vegetation cover and landscape variables on three-year occupancy records from 80 newly provided nest-boxes. Non-random patterns of nest-box occupancy were found with respect to all categories except topography. Results suggest that Great Tits prefer to occupy high-placed nest-boxes, close to areas that can provide them with supplementary resources either within or in the vicinity of the stand (i.e., trees other than eucalypts, riparian vegetation, and large patches of adjacent habitats). Overall, this study provides important recommendations for nest-box placement and spatial distribution in managed forests and enhances the potential of nest-box interventions as a biodiversity offset and management tool
Status assessment of the Critically Endangered Azores Bullfinch <em>Pyrrhula murina</em>
The Azores Bullfinch is endemic to the island of São Miguel (Azores, Portugal). Its status was uplisted to Critically Endangered in 2005 on the basis of an extremely small and declining population that was considered to be restricted to a very small mountain range (43 km2), in a single location, within which the spread of invasive plants constituted a threat to habitat quality. Nevertheless, information was mostly inferred, or the product of, non-systematic studies. In order to carry out a complete assessment of the conservation status we analysed: (i) population trend, calculated from annual monitoring 1991–2008, (ii) population size, and (iii) range size, obtaining estimates in a single morning study in 2008 involving the simultaneous participation of 48 observers. Contrary to previous inferences, the population is no longer decreasing, although quality of laurel forest habitat continues to decline due to the persistent threat of invasive species. Population size (mean ± SE) was estimated at 1,064 ± 304 individuals using distance sampling methods, although the estimate was very sensitive to the survey method used. Range size estimates (extent of occurrence and area of occupancy) were 144 km2 and 83 km2 respectively. Given the present information, we propose the downlisting of Azores Bullfinch to Endangered on the IUCN Red List
Throwing the baby out with the bathwater: Does laurel forest restoration remove a critical winter food supply for the critically endangered Azores bullfinch?
The invasive Clethra arborea has a dual-role in the diet of the Azores bullfinch, a critically endangered bird species endemic to the island of São Miguel (Azores, Portugal). This is a crucial winter food resource but it lowers the availability of native laurel forest species that compose most of the bird's diet throughout the year. The removal of this and other invasive alien species is part of current laurel forest habitat restoration programmes, disregarding the impact on the Azores bullfinch population. In order to evaluate the first responses of the Azores bullfinch to habitat restoration, we studied bird diet, foraging behaviour, food availability and habitat occupancy in managed (without C. arborea) and control areas. Significant increases in the availability of native food resources in managed areas were noticeable in the diet, particularly the intake of Ilex perado ssp. azorica and Prunus lusitanica ssp. azorica flower buds. In most of the studied months birds heavily used and foraged in managed over control areas. The one exception was in December, when a resource-gap occurred in managed areas, which may be overcome in the short-term due to re-establishment of native plants following removal of invasive aliens. © 2010 Springer Science+Business Media B.V.This work was part of the Azores bullfinch monitoring programme included in the project LIFE NAT/P/000013 “Recovery of Azores bullfinch’s habitat in the Special Protection Area of Pico da Vara/Ribeira do Guilherme”.Peer Reviewe
Tiptoeing between restoration and invasion: seed rain into natural gaps within a highly invaded relic forest in the Azores
The last remains of native laurel forest in the
Azores are highly threatened by the spread of invasive
plants. Because landslides are very frequent in these
islands, conservation of native laurel forest requires
knowledge of the patterns of bird-dispersed seed rain into
forest gaps. We monitored 78 seed traps over 1 year to
investigate (1) the role of perches in attracting avian dispersers
into gaps, (2) temporal patterns in the dispersal of
exotic and native seeds, (3) how seed rain affects vegetation
establishment in gaps at different distances from the
native forest and (4) whether the caloric content of fruits
could explain the number of seeds dispersed. Perches were
highly effective in concentrating avian seed dispersal.
While some native fruits are produced all year-round, most
exotic plants set fruits during the main peak of the native
fruit production (August–November). Most seeds recovered
from the traps were native, and native seed rain inside
the native forest was higher than in gaps. However,
deposition of exotic seeds was not affected by distance
from native forest. Seed dispersal frequencies monitored by
seed traps and by faecal analysis were correlated with each
other, but not with fruit caloric content, suggesting that
other factors are more important that the nutritional value
in predicting avian fruit choice. Forest restoration activities
should take into consideration that seed dispersal decreases
sharply beyond 100 m from native forest and the attractive
potential of perches to direct natural seed dispersal into
forest gaps
Mercury biomagnification in an Antarctic food web of the Antarctic Peninsula
Under the climate change context, warming Southern Ocean waters may allow mercury (Hg) to become more bioavailable to the Antarctic marine food web (i.e., ice-stored Hg release and higher methylation rates by microorganisms), whose biomagnification processes are poorly documented. Biomagnification of Hg in the food web of the Antarctic Peninsula, one of the world's fastest-warming regions, was examined using carbon (δ13C) and nitrogen (δ15N) stable isotope ratios for estimating feeding habitat and trophic levels, respectively. The stable isotope signatures and total Hg (T-Hg) concentrations were measured in Antarctic krill Euphausia superba and several Antarctic predator species, including seabirds (gentoo penguins Pygoscelis papua, chinstrap penguins Pygoscelis antarcticus, brown skuas Stercorarius antarcticus, kelp gulls Larus dominicanus, southern giant petrels Macronectes giganteus) and marine mammals (southern elephant seals Mirounga leonina). Significant differences in δ13C values among species were noted with a great overlap between seabird species and M. leonina. As expected, significant differences in δ15N values among species were found due to interspecific variations in diet-related to their trophic position within the marine food web. The lowest Hg concentrations were registered in E. superba (0.007 ± 0.008 μg g−1) and the highest values in M. giganteus (12.090 ± 14.177 μg g−1). Additionally, a significant positive relationship was found between Hg concentrations and trophic levels (reflected by δ15N values), biomagnifying nearly 2 times its concentrations at each level. Our results support that trophic interaction is the major pathway for Hg biomagnification in Southern Ocean ecosystems and warn about an increase in the effects of Hg on long–lived (and high trophic level) Antarctic predators under climate change in the future