9,668 research outputs found

    Resurgent Transseries and the Holomorphic Anomaly: Nonperturbative Closed Strings in Local CP2

    Full text link
    The holomorphic anomaly equations describe B-model closed topological strings in Calabi-Yau geometries. Having been used to construct perturbative expansions, it was recently shown that they can also be extended past perturbation theory by making use of resurgent transseries. These yield formal nonperturbative solutions, showing integrability of the holomorphic anomaly equations at the nonperturbative level. This paper takes such constructions one step further by working out in great detail the specific example of topological strings in the mirror of the local CP2 toric Calabi-Yau background, and by addressing the associated (resurgent) large-order analysis of both perturbative and multi-instanton sectors. In particular, analyzing the asymptotic growth of the perturbative free energies, one finds contributions from three different instanton actions related by Z_3 symmetry, alongside another action related to the Kahler parameter. Resurgent transseries methods then compute, from the extended holomorphic anomaly equations, higher instanton sectors and it is shown that these precisely control the asymptotic behavior of the perturbative free energies, as dictated by resurgence. The asymptotic large-order growth of the one-instanton sector unveils the presence of resonance, i.e., each instanton action is necessarily joined by its symmetric contribution. The structure of different resurgence relations is extensively checked at the numerical level, both in the holomorphic limit and in the general nonholomorphic case, always showing excellent agreement with transseries data computed out of the nonperturbative holomorphic anomaly equations. The resurgence relations further imply that the string free energy displays an intricate multi-branched Borel structure, and that resonance must be properly taken into account in order to describe the full transseries solution.Comment: 63 pages, 54 images in 24 figures, jheppub-nosort.sty; v2: corrected figure, minor changes, final version for CM

    Resurgent Transseries and the Holomorphic Anomaly

    Full text link
    The gauge theoretic large N expansion yields an asymptotic series which requires a nonperturbative completion in order to be well defined. Recently, within the context of random matrix models, it was shown how to build resurgent transseries solutions encoding the full nonperturbative information beyond the 't Hooft genus expansion. On the other hand, via large N duality, random matrix models may be holographically described by B-model closed topological strings in local Calabi-Yau geometries. This raises the question of constructing the corresponding holographically dual resurgent transseries, tantamount to nonperturbative topological string theory. This paper addresses this point by showing how to construct resurgent transseries solutions to the holomorphic anomaly equations. These solutions are built upon (generalized) multi-instanton sectors, where the instanton actions are holomorphic. The asymptotic expansions around the multi-instanton sectors have both holomorphic and anti-holomorphic dependence, may allow for resonance, and their structure is completely fixed by the holomorphic anomaly equations in terms of specific polynomials multiplied by exponential factors and up to the holomorphic ambiguities -- which generalizes the known perturbative structure to the full transseries. In particular, the anti-holomorphic dependence has a somewhat universal character. Furthermore, in the nonperturbative sectors, holomorphic ambiguities may be fixed at conifold points. This construction shows the nonperturbative integrability of the holomorphic anomaly equations, and sets the ground to start addressing large-order analysis and resurgent nonperturbative completions within closed topological string theory.Comment: 59 pages, jheppub-nosort.sty; v2: small additions, minor changes, refs updated; v3: more minor corrections, final version for AH

    Cubic Time Recognition of Cocircuit Graphs of Uniform Oriented Matroids

    Full text link
    We present an algorithm which takes a graph as input and decides in cubic time if the graph is the cocircuit graph of a uniform oriented matroid. In the affirmative case the algorithm returns the set of signed cocircuits of the oriented matroid. This improves an algorithm proposed by Babson, Finschi and Fukuda. Moreover we strengthen a result of Montellano-Ballesteros and Strausz about crabbed connectivity of cocircuit graphs of uniform oriented matroids.Comment: 9 page

    Exponential wealth distribution in a random market. A rigorous explanation

    Full text link
    In simulations of some economic gas-like models, the asymptotic regime shows an exponential wealth distribution, independently of the initial wealth distribution given to the system. The appearance of this statistical equilibrium for this type of gas-like models is explained in a rigorous analytical way.Comment: 9 pages, 4 figure
    • …
    corecore