3 research outputs found

    Successful immunotherapy and irradiation in a HIV-positive patient with metastatic Merkel cell carcinoma

    No full text
    This case report presents a HIV-positive 60-year old male with Merkel cell carcinoma of his right forearm and pulmonary sarcoidosis, who, after excisions and irradiations of the primary tumour site and subsequent lymph node metastases developed distant metastases. He received radiotherapy to symptomatic mediastinal lymph node metastases followed by Doxorubicin and, after two cycles, by the PD-1 inhibitor Pembrolizumab due to mixed response. Re-staging showed a para-mediastinal, radiotherapy-induced pneumonitis, which was treated by prednisolone due to clinical symptoms. In September 2017, the patient developed a solitary lymph node metastasis next to the right atrium, for which he received stereotactic radiotherapy. The systemic treatment with Pembrolizumab was replaced by the PD-L1 inhibitor Avelumab and is being continued since. The patient has been in complete remission for one year now and the HIV-infection is well-controlled. Keywords: Merkel cell carcinoma, Avelumab, Immunotherapy, Pembrolizumab, Immune checkpoint inhibition, Radiotherapy, HIV, Sarcoidosi

    Clinical outcome of concomitant vs interrupted BRAF inhibitor therapy during radiotherapy in melanoma patients

    No full text
    Background: Concomitant radiation with BRAF inhibitor (BRAFi) therapy may increase radiation-induced side effects but also potentially improve tumour control in melanoma patients. Methods: A total of 155 patients with BRAF-mutated melanoma from 17 European skin cancer centres were retrospectively analysed. Out of these, 87 patients received concomitant radiotherapy and BRAFi (59 vemurafenib, 28 dabrafenib), while in 68 patients BRAFi therapy was interrupted during radiation (51 vemurafenib, 17 dabrafenib). Overall survival was calculated from the first radiation (OSRT) and from start of BRAFi therapy (OSBRAFi). Results: The median duration of BRAFi treatment interruption prior to radiotherapy was 4 days and lasted for 17 days. Median OSRT and OSBRAFi in the entire cohort were 9.8 and 12.6 months in the interrupted group and 7.3 and 11.5 months in the concomitant group (P=0.075/P=0.217), respectively. Interrupted vemurafenib treatment with a median OSRT and OSBRAFi of 10.1 and 13.1 months, respectively, was superior to concomitant vemurafenib treatment with a median OSRT and OSBRAFi of 6.6 and 10.9 months (P=0.004/P=0.067). Interrupted dabrafenib treatment with a median OSRT and OSBRAFi of 7.7 and 9.8 months, respectively, did not differ from concomitant dabrafenib treatment with a median OSRT and OSBRAFi of 9.9 and 11.6 months (P=0.132/P=0.404). Median local control of the irradiated area did not differ in the interrupted and concomitant BRAFi treatment groups (P=0.619). Skin toxicity of grade ≥2 (CTCAE) was significantly increased in patients with concomitant vemurafenib compared to the group with treatment interruption (P=0.002). Conclusions: Interruption of vemurafenib treatment during radiation was associated with better survival and less toxicity compared to concomitant treatment. Due to lower number of patients, the relevance of treatment interruption in dabrafenib treated patients should be further investigated. The results of this analysis indicate that treatment with the BRAFi vemurafenib should be interrupted during radiotherapy. Prospective studies are desperately needed

    Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma

    No full text
    Immune-checkpoint blockade (ICB) has demonstrated efficacy in many tumor types, but predictors of responsiveness to anti-PD1 ICB are incompletely characterized. In this study, we analyzed a clinically annotated cohort of patients with melanoma (n = 144) treated with anti-PD1 ICB, with whole-exome and whole-transcriptome sequencing of pre-treatment tumors. We found that tumor mutational burden as a predictor of response was confounded by melanoma subtype, whereas multiple novel genomic and transcriptomic features predicted selective response, including features associated with MHC-I and MHC-II antigen presentation. Furthermore, previous anti-CTLA4 ICB exposure was associated with different predictors of response compared to tumors that were naive to ICB, suggesting selective immune effects of previous exposure to anti-CTLA4 ICB. Finally, we developed parsimonious models integrating clinical, genomic and transcriptomic features to predict intrinsic resistance to anti-PD1 ICB in individual tumors, with validation in smaller independent cohorts limited by the availability of comprehensive data. Broadly, we present a framework to discover predictive features and build models of ICB therapeutic response
    corecore