1,910 research outputs found
Determination of total plasma hydroperoxides using a diphenyl-1- pyrenylphosphine fluorescent probe
Plasma hydroperoxides (HPs) are widely accepted to be good indicators of oxidative stress. By means of the method proposed here, which uses diphenyl-1-pyrenylphosphine (DPPP) as a fluorescent probe, all types of plasma HP were determined. The limits of detection and quantification of the method were 0.08 and 0.25 nmol of cumene hydroperoxide (CHP) equivalents in 40 μl of plasma, respectively. The method is satisfactory in terms of precision (5.3% for 14.5 μM CHP eq., n = 8), and the recoveries were 91% and 92% after standard additions of 26 and 52 μM CHP, respectively. The selectivity of the proposed method is higher than 96%. Moreover, optimization of the reaction conditions and the addition of ethylenediaminetetraacetic acid (EDTA) disodium salt and 2,6-di-tert-butyl-4-methylphenol (BHT) prevented the formation of HP artifacts during the analysis. Therefore, the proposed method is useful for simple and quantitative determination of total plasma HPs. © 2012 Elsevier Inc. All rights reserved.Peer Reviewe
DYNAMICS OF SELECTED TOWER DIVE TAKE-OFFS
The mechanics of platform diving, unlike those of springboard diving. have not been investigated to any great degree. Unlike the springboard, the platform provides no elastic energy to enhance the diver's momentum. At take-off the diver must achieve sufficient linear momentum to ensure the necessary height and distance to travel safely away from the platform and sufficient angular momentum to complete the required number of rotations about the transverse axis. Ground reaction forces (GRF) developed during contact with the diving platform and the body position of the diver at take-off define the magnitude and direction of the diver's momentum.
The nature of rotations in springboard diving has been reported by many researchers and coaches (Fairbanks, 1963; Batterman, 1968; Stroup and Bushnell, 1969)...-tn most cases, it was felt that body Jean at take-off determined the number of rotations in the dive. Golden (1984) found that body lean at take-off increases according to the number of rotations being performed. Miller (1984) found that the height obtained in springboard diving was predominantly due to the action of the lower extremities as they accelera ted the trunk upwards.
Although a number of investigators have studied springboard diving, there is an apparent Jack of information pertaining to platform diving. Furthermore, it seemes necessary to study the nature of increased rotations in platform diving. The purpose of this study was, therefore, to investigate the kinetics and kinematics of platform dive take-offs in which a rotation or multiple rotations occurred
An ensemble approach to assess hydrological models’ contribution to uncertainties in the analysis of climate change impact on water resources
Over the recent years, several research efforts investigated the impact of climate
change on water resources for different regions of the world. The projection of future
river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 5 project (Que´bec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in
10 Southern Que´bec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate
models driven by a given number of GCMs’ members over a reference (1971–2000)
and a future (2041–2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows
On the need for bias correction in regional climate scenarios to assess climate change impacts on river runoff
In climate change impact research, the assessment of future river runoff as well as the catchment scale water balance is impeded by different sources of modeling uncertainty.
Some research has already been done in order to quantify the uncertainty of climate 5 projections originating from the climate models and the downscaling techniques as well as from the internal variability evaluated from climate model member ensembles.
Yet, the use of hydrological models adds another layer of incertitude. Within the QBic3
project (Qu´ebec-Bavaria International Collaboration on Climate Change) the relative
contributions to the overall uncertainty from the whole model chain (from global climate 10 models to water management models) are investigated using an ensemble of multiple climate and hydrological models.
Although there are many options to downscale global climate projections to the regional
scale, recent impact studies tend to use Regional Climate Models (RCMs). One reason for that is that the physical coherence between atmospheric and land-surface 15 variables is preserved. The coherence between temperature and precipitation is of particular interest in hydrology. However, the regional climate model outputs often are biased compared to the observed climatology of a given region. Therefore, biases in those outputs are often corrected to reproduce historic runoff conditions from hydrological models using them, even if those corrections alter the relationship between temperature and precipitation. So, as bias correction may affect the consistency between RCM output variables, the use of correction techniques and even the use of (biased) climate model data itself is sometimes disputed among scientists. For those reasons, the effect of bias correction on simulated runoff regimes and the relative change in selected runoff indicators is explored. If it affects the conclusion of climate change analysis in 25 hydrology, we should consider it as a source of uncertainty. If not, the application of bias correction methods is either unnecessary in hydro-climatic projections, or safe to use as it does not alter the change signal of river runoff. The results of the present paper highlight the analysis of daily runoff simulated with four different hydrological models in two natural-flow catchments, driven by different regional climate models for a reference and a future period. As expected, bias correction of climate model outputs is important for the reproduction of the runoff regime of the 5 past regardless of the hydrological model used. Then again, its impact on the relative change of flow indicators between reference and future period is weak for most indicators with the exception of the timing of the spring flood peak. Still, our results indicate that the impact of bias correction on runoff indicators increases with bias in the climate simulations
Non equilibrium inertial dynamics of colloidal systems
We consider the properties of a one dimensional fluid of brownian inertial
hard-core particles, whose microscopic dynamics is partially damped by a
heat-bath. Direct interactions among the particles are represented as binary,
instantaneous elastic collisions. Collisions with the heath bath are accounted
for by a Fokker-Planck collision operator, whereas direct collisions among the
particles are treated by a well known method of kinetic theory, the Revised
Enskog Theory. By means of a time multiple time-scale method we derive the
evolution equation for the average density. Remarkably, for large values of the
friction parameter and/or of the mass of the particles we obtain the same
equation as the one derived within the dynamic density functional theory (DDF).
In addition, at moderate values of the friction constant, the present method
allows to study the inertial effects not accounted for by DDF method. Finally,
a numerical test of these corrections is provided.Comment: 13 pages+ 3 Postscript figure
Negative ions formed in N<sub>2</sub>/CH<sub>4</sub>/Ar discharge – a simulation of Titan's atmosphere chemistry
The formation of negative ions produced in a negative point-to-plane corona discharge fed by a Ar/N2//CH4/ gas mixture has been studied using mass spectrometry. The measurements were carried out in flowing regime at ambient temperature and a reduced pressure of 460 mbar. The CN ? anion has been found to be the most dominant negative ion in the discharge and is believed to be the precursor of heavier negative ions such as C3/N ? and C5/N ? . The most likely pathway for the formation of such molecular anions is H-loss dissociative electron attachment to HCN, H3/CN and H5/CN formed in the discharge. These same anions have been detected in Titan's atmosphere and the present experiments may provide some novel insights into the chemical and physical mechanisms prevalent in Titan's atmosphere and hence assist in the interpretation of results from the Cassini Huygens space mission
Free Meixner states
Free Meixner states are a class of functionals on non-commutative polynomials
introduced in math.CO/0410482. They are characterized by a resolvent-type form
for the generating function of their orthogonal polynomials, by a recursion
relation for those polynomials, or by a second-order non-commutative
differential equation satisfied by their free cumulant functional. In this
paper, we construct an operator model for free Meixner states. By combinatorial
methods, we also derive an operator model for their free cumulant functionals.
This, in turn, allows us to construct a number of examples. Many of these
examples are shown to be trivial, in the sense of being free products of
functionals which depend on only a single variable, or rotations of such free
products. On the other hand, the multinomial distribution is a free Meixner
state and is not a product. Neither is a large class of tracial free Meixner
states which are analogous to the simple quadratic exponential families in
statistics.Comment: 30 page
Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake
International audienceWe investigate temporal variations in the polarization of surface waves determined using ambient seismic noise cross-correlations between station pairs at the time of the Mw 6.0 Parkfield earthquake of September 28, 2004. We use data recorded by the High Resolution Seismic Network's 3-component seismometers located along the San Andreas Fault. Our results show strong variations in azimuthal surface wave polarizations, Psi, for the paths containing station VARB, one of the closest stations to the San Andreas Fault, synchronous with the Parkfield earthquake. Concerning the other station pair, only smooth temporal variations of Y are observed. Two principal contributions to these changes in Y are identified and separated. They are: (1) slow and weak variations due to seasonal changes in the incident direction of seismic noise; and (2) strong and rapid rotations synchronous with the Parkfield earthquake for paths containing station VARB. Strong shifts in Y are interpreted in terms of changes in crack-induced anisotropy due to the co-seismic rotation of the stress field. Because these changes are only observed on paths containing station VARB, the anisotropic layer responsible for the changes is most likely localized around VARB in the shallow crust. These results suggest that the polarization of surface waves may be very sensitive to changes in the orientations of distributed cracks and that implementation of our technique on a routine basis may prove useful for monitoring stress changes deep within seismogenic zones. Citation: Durand, S., J. P. Montagner, P. Roux, F. Brenguier, R. M. Nadeau, and Y. Ricard (2011), Passive monitoring of anisotropy change associated with the Parkfield 2004 earthquake, Geophys. Res. Lett., 38, L13303, doi: 10.1029/2011GL047875
Topology and Evolution of Technology Innovation Networks
The web of relations linking technological innovation can be fairly described
in terms of patent citations. The resulting patent citation network provides a
picture of the large-scale organization of innovations and its time evolution.
Here we study the patterns of change of patents registered by the US Patent and
Trademark Office (USPTO). We show that the scaling behavior exhibited by this
network is consistent with a preferential attachment mechanism together with a
Weibull-shaped aging term. Such attachment kernel is shared by scientific
citation networks, thus indicating an universal type of mechanism linking ideas
and designs and their evolution. The implications for evolutionary theory of
innovation are discussed.Comment: 6 pages, 5 figures, submitted to Physical Review
Infection with Toxoplasma gondii does not Alter TNFα and IL-6 Secretion by A human Astrocytoma Cell Line
The secretion of tumour necrosis factor-α (TNFα),
interleukin-1α (IL-α) and interleukin-6 (IL-6) by a
human astrocytoma cell fine was studied 1 h, 3 h, 6 h and 24 h after
infection with tachyzoites from three Toxoplasma gondii
strains (virulent, RH; cystogentc, 76K and Prugniaud strains). The
astrocytoma cell fine constitutively secreted TNFα and IL-6,
but no IL-1α. A positive control was obtained by stimulation
with phorbol esters inducing a significant increase (p < 0.05) in TNFα and IL- 6 secretion but not in IL-1α, while
lipopolysaccharide (alone and after priming), interferon gamma,
ionophore A 23187 and sera positive to T. gondii did
not induce any increase in cytokine levels. None of the tachyzoites,
whatever their virulence, induced a significant increase in cytokine
production at any time in the study. Tachyzoites did not inhibit the
secretion induced by phorbol esters
- …