7 research outputs found

    <i>GBA</i>, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches

    No full text
    Parkinson&#8217;s disease (PD) is the second most common degenerative disorder. Although the disease was described more than 200 years ago, its pathogenetic mechanisms have not yet been fully described. In recent years, the discovery of the association between mutations of the GBA gene (encoding for the lysosomal enzyme glucocerebrosidase) and PD facilitated a better understating of this disorder. GBA mutations are the most common genetic risk factor of the disease. However, mutations of this gene can be found in different phenotypes, such as Gaucher&#8217;s disease (GD), PD, dementia with Lewy bodies (DLB) and rapid eye movements (REM) sleep behavior disorders (RBDs). Understanding the pathogenic role of this mutation and its different manifestations is crucial for geneticists and scientists to guide their research and to select proper cohorts of patients. Moreover, knowing the implications of the GBA mutation in the context of PD and the other associated phenotypes is also important for clinicians to properly counsel their patients and to implement their care. With the present review we aim to describe the genetic, clinical, and therapeutic features related to the mutation of the GBA gene

    The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration

    No full text
    In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype
    corecore