7 research outputs found

    Advanced Seismic Analyses of “Apennine Churches” Stroked by the Central Italy Earthquakes of 2016 by the Non-Smooth Contact Dynamics Method

    No full text
    The dynamic behaviour and the seismic vulnerability of different masonry “Apennine Churches”, dramatically damaged by the last shocks sequence of 2016 that occurred in Central Italy, have been studied in this paper by means of advanced 3D numerical analyses with the Discrete Element Method (DEM). Thus, a discontinuous approach has been used to assess the dynamic properties and the vulnerability of the masonry structure, through large deformations regulated by the Signorini’s law, concerning the impenetrability between the rigid bodies, and by the Coulomb’s law, regarding the dry-friction model. The major purpose of this study is to highlight that relevant data on the real structural behaviour of historical masonry can be provided through advanced numerical analyses. The comparison between the results of the numerical simulation and the survey of the existing crack pattern of the churches permitted to validate the used approach. Finally, from the results and conclusions of these cases study, it is possible to affirm that the used methodology can be applied to a wide variety of historical masonry structure in Europe

    Damage Assessment of San Francesco Church in Amandola Hit by Central Italy 2016-2017 Seismic Event

    No full text
    Italy is a high seismic risk country since 1900 more than 30 earthquakes with magnitude greater than Mw=5.8 have occurred, and the last one is the Central Italy seismic sequence. The first shock occurred in the 24 August (Mw=6.2) followed by another stronger quake in the 30th October (Mw=6.5). It hit the regions of Marche, Umbria, and Abruzzo heavily causing many deaths, injuries and extensive damages on the cultural heritage. This paper analyses the church of San Francesco in Amadola, located in the Marche region that has been considered condemned for the severe damages reported after these earthquakes. The church is globally analyzed by the application of nonlinear static analysis on a Finite Element Model where the nonlinearity of masonry is taking into account with a proper constitutive law. The study wants to prove how global analysis combined by the local analysis can reproduce the behavior of this structure during a quake, showing that it can repeat the real damages produced by earthquakes

    Tracking Modal Parameter Evolution of Different Cultural Heritage Structure Damaged by Central Italy Earthquake of 2016

    No full text
    The preliminary results of an ambient-vibration based investigation conducted on a large sample of historic masonry towers in the Marche region (Central Italy) are presented, with a focus on the belfry of Collegiata of Santa Maria in Visso (Italy). The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. As the most doubtful parameters, the modulus of elasticity of the masonry is adjusted to achieve the experimental results with numerical model by simple operations

    Monitoring cultural heritage buildings: The San Ciriaco bell-tower in Ancona

    No full text
    The preliminary results of an ambient-vibration based investigation conducted on the San Ciriaco Belfry in Ancona (Italy) is presented. The assessment procedure includes full-scale ambient vibration testing, modal identification from ambient vibration responses, finite element modeling and dynamic-based identification of the uncertain structural parameters of the model. As the most doubtful parameters, the modulus of elasticity of the masonry is adjusted to achieve the experimental results with numerical model by simple operation
    corecore