13,415 research outputs found
Lande g-tensor in semiconductor nanostructures
Understanding the electronic structure of semiconductor nanostructures is not
complete without a detailed description of their corresponding spin-related
properties. Here we explore the response of the shell structure of InAs
self-assembled quantum dots to magnetic fields oriented in several directions,
allowing the mapping of the g-tensor modulus for the s and p shells. We found
that the g-tensors for the s and p shells show a very different behavior. The
s-state in being more localized allows the probing of the confining potential
details by sweeping the magnetic field orientation from the growth direction
towards the in-plane direction. As for the p-state, we found that the g-tensor
modulus is closer to that of the surrounding GaAs, consistent with a larger
delocalization. These results reveal further details of the confining
potentials of self-assembled quantum dots that have not yet been probed, in
addition to the assessment of the g-tensor, which is of fundamental importance
for the implementation of spin related applications.Comment: 4 pages, 4 figure
Detection of two endornavirus in common bean genotypes in Brazil.
Endornaviruses (Endornaviridae) are persistent viruses that infect important crops such as pepper, rice, broad bean, and beans. However, these viruses are poorly studied and have not yet been reported in Brazil. In this study, we investigated the occurrence of two endornaviruses, Phaseolus vulgaris endornavirus-1 (PvEV-1) and Phaseolus vulgaris endornavirus-2 (PvEV-2) in bean genotypes
The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies
This paper presents an analysis of the smoothness problem in cosmology by
focussing on the ambiguities originated in the simplifying hypotheses aimed at
observationally verifying if the large-scale distribution of galaxies is
homogeneous, and conjecturing that this distribution should follow a fractal
pattern in perturbed standard cosmologies. This is due to a geometrical effect,
appearing when certain types of average densities are calculated along the past
light cone. The paper starts reviewing the argument concerning the possibility
that the galaxy distribution follows such a scaling pattern, and the premises
behind the assumption that the spatial homogeneity of standard cosmology can be
observable. Next, it is argued that to discuss observable homogeneity one needs
to make a clear distinction between local and average relativistic densities,
and showing how the different distance definitions strongly affect them,
leading the various average densities to display asymptotically opposite
behaviours. Then the paper revisits Ribeiro's (1995: astro-ph/9910145) results,
showing that in a fully relativistic treatment some observational average
densities of the flat Friedmann model are not well defined at z ~ 0.1, implying
that at this range average densities behave in a fundamentally different manner
as compared to the linearity of the Hubble law, well valid for z < 1. This
conclusion brings into question the widespread assumption that relativistic
corrections can always be neglected at low z. It is also shown how some key
features of fractal cosmologies can be found in the Friedmann models. In view
of those findings, it is suggested that the so-called contradiction between the
cosmological principle, and the galaxy distribution forming an unlimited
fractal structure, may not exist.Comment: 30 pages, 2 figures, LaTeX. This paper is a follow-up to
gr-qc/9909093. Accepted for publication in "General Relativity and
Gravitation
High incidence of mixed DNA and RNA virus infections in common bean in Central Brazil.
During the winter crop season in 2016 a very high incidence of viruslike symptoms of mosaic, leaf curling and deformation, and plant dwarfing was reported by farmers in central areas of Brazil. Bean plants were collected in commercial farms in Luziânia, Cristalina and experimental plots in Goiânia and Brasília
Shell structure and electron-electron interaction in self-assembled InAs quantum dots
Using far-infrared spectroscopy, we investigate the excitations of
self-organized InAs quantum dots as a function of the electron number per dot,
1<n<6, which is monitored in situ by capacitance spectroscopy. Whereas the
well-known two-mode spectrum is observed when the lowest s - states are filled,
we find a rich excitation spectrum for n=3, which reflects the importance of
electron-electron interaction in the present, strongly non-parabolic confining
potential. From capacitance spectroscopy we find that the electronic shell
structure in our dots gives rise to a distinct pattern in the charging energies
which strongly deviates from the monotonic behavior of the Coulomb blockade
found in mesoscopic or metallic structures.Comment: 4 pages, 3 PostScript figure
Qualidade e conservação pós-colheita de cebola ‘Vale Ouro’ submetida a doses de nitrogênio e potássio em cultivo convencional, no Submédio do Vale São Francisco.
Suplemento. Edição dos Trabalhos do 49 Congresso Brasileiro de Olericultura, Águas de Lindóia, ago. 2009
- …