73 research outputs found

    Targeted Data Generation: Finding and Fixing Model Weaknesses

    Full text link
    Even when aggregate accuracy is high, state-of-the-art NLP models often fail systematically on specific subgroups of data, resulting in unfair outcomes and eroding user trust. Additional data collection may not help in addressing these weaknesses, as such challenging subgroups may be unknown to users, and underrepresented in the existing and new data. We propose Targeted Data Generation (TDG), a framework that automatically identifies challenging subgroups, and generates new data for those subgroups using large language models (LLMs) with a human in the loop. TDG estimates the expected benefit and potential harm of data augmentation for each subgroup, and selects the ones most likely to improve within group performance without hurting overall performance. In our experiments, TDG significantly improves the accuracy on challenging subgroups for state-of-the-art sentiment analysis and natural language inference models, while also improving overall test accuracy.Comment: Accepted to ACL 202

    Adaptive Testing of Computer Vision Models

    Full text link
    Vision models often fail systematically on groups of data that share common semantic characteristics (e.g., rare objects or unusual scenes), but identifying these failure modes is a challenge. We introduce AdaVision, an interactive process for testing vision models which helps users identify and fix coherent failure modes. Given a natural language description of a coherent group, AdaVision retrieves relevant images from LAION-5B with CLIP. The user then labels a small amount of data for model correctness, which is used in successive retrieval rounds to hill-climb towards high-error regions, refining the group definition. Once a group is saturated, AdaVision uses GPT-3 to suggest new group descriptions for the user to explore. We demonstrate the usefulness and generality of AdaVision in user studies, where users find major bugs in state-of-the-art classification, object detection, and image captioning models. These user-discovered groups have failure rates 2-3x higher than those surfaced by automatic error clustering methods. Finally, finetuning on examples found with AdaVision fixes the discovered bugs when evaluated on unseen examples, without degrading in-distribution accuracy, and while also improving performance on out-of-distribution datasets.Comment: ICCV camera-read

    Supporting Human-AI Collaboration in Auditing LLMs with LLMs

    Full text link
    Large language models are becoming increasingly pervasive and ubiquitous in society via deployment in sociotechnical systems. Yet these language models, be it for classification or generation, have been shown to be biased and behave irresponsibly, causing harm to people at scale. It is crucial to audit these language models rigorously. Existing auditing tools leverage either or both humans and AI to find failures. In this work, we draw upon literature in human-AI collaboration and sensemaking, and conduct interviews with research experts in safe and fair AI, to build upon the auditing tool: AdaTest (Ribeiro and Lundberg, 2022), which is powered by a generative large language model (LLM). Through the design process we highlight the importance of sensemaking and human-AI communication to leverage complementary strengths of humans and generative models in collaborative auditing. To evaluate the effectiveness of the augmented tool, AdaTest++, we conduct user studies with participants auditing two commercial language models: OpenAI's GPT-3 and Azure's sentiment analysis model. Qualitative analysis shows that AdaTest++ effectively leverages human strengths such as schematization, hypothesis formation and testing. Further, with our tool, participants identified a variety of failures modes, covering 26 different topics over 2 tasks, that have been shown before in formal audits and also those previously under-reported.Comment: 21 pages, 3 figure

    ScatterShot: Interactive In-context Example Curation for Text Transformation

    Full text link
    The in-context learning capabilities of LLMs like GPT-3 allow annotators to customize an LLM to their specific tasks with a small number of examples. However, users tend to include only the most obvious patterns when crafting examples, resulting in underspecified in-context functions that fall short on unseen cases. Further, it is hard to know when "enough" examples have been included even for known patterns. In this work, we present ScatterShot, an interactive system for building high-quality demonstration sets for in-context learning. ScatterShot iteratively slices unlabeled data into task-specific patterns, samples informative inputs from underexplored or not-yet-saturated slices in an active learning manner, and helps users label more efficiently with the help of an LLM and the current example set. In simulation studies on two text perturbation scenarios, ScatterShot sampling improves the resulting few-shot functions by 4-5 percentage points over random sampling, with less variance as more examples are added. In a user study, ScatterShot greatly helps users in covering different patterns in the input space and labeling in-context examples more efficiently, resulting in better in-context learning and less user effort.Comment: IUI 2023: 28th International Conference on Intelligent User Interface

    A study on the Interpretability of Neural Retrieval Models using DeepSHAP

    Full text link
    A recent trend in IR has been the usage of neural networks to learn retrieval models for text based adhoc search. While various approaches and architectures have yielded significantly better performance than traditional retrieval models such as BM25, it is still difficult to understand exactly why a document is relevant to a query. In the ML community several approaches for explaining decisions made by deep neural networks have been proposed -- including DeepSHAP which modifies the DeepLift algorithm to estimate the relative importance (shapley values) of input features for a given decision by comparing the activations in the network for a given image against the activations caused by a reference input. In image classification, the reference input tends to be a plain black image. While DeepSHAP has been well studied for image classification tasks, it remains to be seen how we can adapt it to explain the output of Neural Retrieval Models (NRMs). In particular, what is a good "black" image in the context of IR? In this paper we explored various reference input document construction techniques. Additionally, we compared the explanations generated by DeepSHAP to LIME (a model agnostic approach) and found that the explanations differ considerably. Our study raises concerns regarding the robustness and accuracy of explanations produced for NRMs. With this paper we aim to shed light on interesting problems surrounding interpretability in NRMs and highlight areas of future work.Comment: 4 pages; SIGIR 2019 Short Pape

    Editing Models with Task Arithmetic

    Full text link
    Changing how pre-trained models behave -- e.g., improving their performance on a downstream task or mitigating biases learned during pre-training -- is a common practice when developing machine learning systems. In this work, we propose a new paradigm for steering the behavior of neural networks, centered around \textit{task vectors}. A task vector specifies a direction in the weight space of a pre-trained model, such that movement in that direction improves performance on the task. We build task vectors by subtracting the weights of a pre-trained model from the weights of the same model after fine-tuning on a task. We show that these task vectors can be modified and combined together through arithmetic operations such as negation and addition, and the behavior of the resulting model is steered accordingly. Negating a task vector decreases performance on the target task, with little change in model behavior on control tasks. Moreover, adding task vectors together can improve performance on multiple tasks at once. Finally, when tasks are linked by an analogy relationship of the form ``A is to B as C is to D", combining task vectors from three of the tasks can improve performance on the fourth, even when no data from the fourth task is used for training. Overall, our experiments with several models, modalities and tasks show that task arithmetic is a simple, efficient and effective way of editing models.Comment: In Proceedings of the 11th International Conference on Learning Representations (ICLR 2023

    Actionable Recourse in Linear Classification

    Full text link
    Machine learning models are increasingly used to automate decisions that affect humans - deciding who should receive a loan, a job interview, or a social service. In such applications, a person should have the ability to change the decision of a model. When a person is denied a loan by a credit score, for example, they should be able to alter its input variables in a way that guarantees approval. Otherwise, they will be denied the loan as long as the model is deployed. More importantly, they will lack the ability to influence a decision that affects their livelihood. In this paper, we frame these issues in terms of recourse, which we define as the ability of a person to change the decision of a model by altering actionable input variables (e.g., income vs. age or marital status). We present integer programming tools to ensure recourse in linear classification problems without interfering in model development. We demonstrate how our tools can inform stakeholders through experiments on credit scoring problems. Our results show that recourse can be significantly affected by standard practices in model development, and motivate the need to evaluate recourse in practice.Comment: Extended version. ACM Conference on Fairness, Accountability and Transparency [FAT2019
    • …
    corecore