5 research outputs found

    TRUE-1: Trial of Repurposed Unithiol for snakebite Envenoming phase 1 (safety, tolerability, pharmacokinetics and pharmacodynamics in healthy Kenyan adults)

    No full text
    Background: Snakebites affect over 5 million people each year, and over 100,000 per year die as a result. The only available treatment is antivenom, which has many shortcomings including high cost, intravenous administration, and high risk of adverse events. One of the most abundant and harmful components of viper venoms are the zinc-dependent snake venom metalloproteinases (SVMPs). Unithiol is a chelating agent which is routinely used to treat heavy metal poisoning. In vivo experiments in small animal models have demonstrated that unithiol can prevent local tissue damage and death caused by a certain viper species. This phase I clinical trial will assess the safety of ascending doses of unithiol with a view for repurposing for snakebite indication. Methods: This open label, single agent, phase I clinical trial of a repurposed drug has a primary objective to evaluate the safety of escalating doses of unithiol, and a secondary objective to describe its pharmacokinetics. In total, 64 healthy Kenyan volunteers from Kilifi County will be dosed in consecutive groups of eight, with dose escalation decisions dependent on review of safety data by an independent data safety monitoring board. Four groups will receive ascending single oral doses, two will receive multiple oral doses, and two will receive single intravenous doses. Follow-up will be for 6-months and includes full adverse event reporting. Pharmacokinetic analysis will define the Cmax, Tmax, half-life and renal elimination. Conclusions: This clinical trial will assess the safety and tolerability of a promising oral therapeutic in a relevant setting where snakebites are prevalent. Unithiol is likely to be safer than antivenom, is easier to manufacture, has activity against diverse snake species, and can be administered orally, and thus shows promise for repurposing for tropical snakebite. Pan African Clinical Trials Registry PACTR202103718625048 (3/3/2021

    Pooled testing conserves SARS-CoV-2 laboratory resources and improves test turn-around time: Experience on the Kenyan Coast

    No full text
    Background: International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods: We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results: In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions: Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings.</p

    Genomic epidemiology of SARS-CoV-2 in Seychelles, 2020–2021

    No full text
    Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained low until January 2021, when a surge was observed. Here, we investigated the potential drivers of the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between 14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during the study period. The majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible SARS-CoV-2 variants into the islands

    Maintaining laboratory quality assurance and safety in a pandemic: experiences from the KEMRI-Wellcome Trust Research Programme laboratory’s COVID-19 response

    No full text
    Laboratory diagnosis plays a critical role in the containment of a pandemic. Strong laboratory quality management systems (QMS) are essential for laboratory diagnostic services. However, low laboratory capacities in resource-limited countries has made the maintenance of laboratory quality assurance, especially during a pandemic, a daunting task. In this paper, we describe our experience of how we went about providing diagnostic testing services for SARS-CoV-2 through laboratory reorganization, redefining of the laboratory workflow, and training and development of COVID-19 documented procedures, all while maintaining the quality assurance processes during the COVID-19 pandemic at the Kenya Medical Research Institute (KEMRI) Wellcome Trust Research Programme (KWTRP) laboratory. The KWTRP laboratory managed to respond to the COVID-19 outbreak in Kenya by providing diagnostic testing for the coastal region of the country, while maintaining its research standard quality assurance processes. A COVID-19 team comprising of seven sub-teams with assigned specific responsibilities and an organizational chart with established reporting lines were developed. Additionally, a total of four training sessions were conducted for county Rapid Response Teams (RRTs) and laboratory personnel. A total of 11 documented procedures were developed to support the COVID-19 testing processes, with three for the pre-analytical phases, seven for the analytical phase, and one for the post-analytical phase. With the workflow re-organization, the development of appropriate standard operating procedures, and training, research laboratories can effectively respond to pandemic outbreaks while maintaining research standard QMS procedures
    corecore