2 research outputs found

    RowPress: Amplifying Read Disturbance in Modern DRAM Chips

    Full text link
    Memory isolation is critical for system reliability, security, and safety. Unfortunately, read disturbance can break memory isolation in modern DRAM chips. For example, RowHammer is a well-studied read-disturb phenomenon where repeatedly opening and closing (i.e., hammering) a DRAM row many times causes bitflips in physically nearby rows. This paper experimentally demonstrates and analyzes another widespread read-disturb phenomenon, RowPress, in real DDR4 DRAM chips. RowPress breaks memory isolation by keeping a DRAM row open for a long period of time, which disturbs physically nearby rows enough to cause bitflips. We show that RowPress amplifies DRAM's vulnerability to read-disturb attacks by significantly reducing the number of row activations needed to induce a bitflip by one to two orders of magnitude under realistic conditions. In extreme cases, RowPress induces bitflips in a DRAM row when an adjacent row is activated only once. Our detailed characterization of 164 real DDR4 DRAM chips shows that RowPress 1) affects chips from all three major DRAM manufacturers, 2) gets worse as DRAM technology scales down to smaller node sizes, and 3) affects a different set of DRAM cells from RowHammer and behaves differently from RowHammer as temperature and access pattern changes. We demonstrate in a real DDR4-based system with RowHammer protection that 1) a user-level program induces bitflips by leveraging RowPress while conventional RowHammer cannot do so, and 2) a memory controller that adaptively keeps the DRAM row open for a longer period of time based on access pattern can facilitate RowPress-based attacks. To prevent bitflips due to RowPress, we describe and evaluate a new methodology that adapts existing RowHammer mitigation techniques to also mitigate RowPress with low additional performance overhead. We open source all our code and data to facilitate future research on RowPress.Comment: Extended version of the paper "RowPress: Amplifying Read Disturbance in Modern DRAM Chips" at the 50th Annual International Symposium on Computer Architecture (ISCA), 202

    An Experimental Analysis of RowHammer in HBM2 DRAM Chips

    Full text link
    RowHammer (RH) is a significant and worsening security, safety, and reliability issue of modern DRAM chips that can be exploited to break memory isolation. Therefore, it is important to understand real DRAM chips' RH characteristics. Unfortunately, no prior work extensively studies the RH vulnerability of modern 3D-stacked high-bandwidth memory (HBM) chips, which are commonly used in modern GPUs. In this work, we experimentally characterize the RH vulnerability of a real HBM2 DRAM chip. We show that 1) different 3D-stacked channels of HBM2 memory exhibit significantly different levels of RH vulnerability (up to 79% difference in bit error rate), 2) the DRAM rows at the end of a DRAM bank (rows with the highest addresses) exhibit significantly fewer RH bitflips than other rows, and 3) a modern HBM2 DRAM chip implements undisclosed RH defenses that are triggered by periodic refresh operations. We describe the implications of our observations on future RH attacks and defenses and discuss future work for understanding RH in 3D-stacked memories.Comment: To appear at DSN Disrupt 202
    corecore