55 research outputs found

    Magnetic structure in Dy/Sc superlattices

    Get PDF
    We have investigated magnetic order in superlattices of Dy and Sc grown along the hcp c axis by molecular beam epitaxy (MBE) techniques. Our neutron diffraction experiments reveal that individual Dy layers order ferromagnetically below Tc∼150 K. The magnetic coherence length along the growth direction is less than the Dy-layer thickness. Previous studies of rare-earth superlattices with Y or Lu as spacer layers have shown that magnetic coherence propagates through sufficiently thin nonmagnetic interlayers. This arises from the long-range exchange interaction that originates from nesting features in the Fermi surface of the spacer material. The lack of coupling in Dy/Sc superlattices reflects the very different Fermi surface of Sc, with much weaker nesting than Y and Lu

    Anisotropic magnetic behavior in Dy/Y films and superlattices

    Get PDF
    By neutron diffraction we show that superlattices of Dy and Y grown by molecular-beam epitaxy along the hcp b axis exhibit little magnetic coupling between successive Dy layers, even for Y spacers as thin as 9 atomic planes (26). Previous studies of Dy/Y superlattices grown along the hcp c axis established that long-range three-dimensional helimagnetic ordering takes place even through Y spacer layers as thick as 120. This highly anisotropic coupling behavior is shown to have its origin in nearly-two-dimensional nesting features of the Y and Dy Fermi surfaces. Nesting along the c axis gives rise to sharp peaks along c in the wave-vector-dependent magnetic susceptibility, and causes the exchange coupling to exhibit long-range oscillations in real space. The lack of nesting features along the b axis leaves a rapid exponential decay of the exchange interaction with spin separation. From magnetic measurements by superconducting-quantum-interference-device magnetometry on b-axis superlattices and films, we deduce that the first-order ferromagnetic transition of Dy is suppressed, and that the critical field required to produce the ferromagnetic alignment is much higher than the c-axis counterpart. This difference arises from anisotropy of the energy balance of the system. The magnetic coherence in b-axis superlattices and films is anisotropic and exhibits an unusual temperature dependence

    Charge dynamics and "ferromagnetism" of A1-xLaxB6 (A=Ca and Sr)

    Full text link
    Ferromagnetism has been reported recently in La-doped alkaline-earth hexaborides, A1-xLaxB6 (A=Ca, Sr, and Ba). We have performed the reflectivity, Hall resistivity, and magnetization measurements of A1-xLaxB6. The results indicate that A1-xLaxB6 can be regarded as a simple doped semimetal, with no signature of an excitonic state as suggested by several theories. It is also found that the surface of as-grown samples (10 micrometer in thickness) has a different electronic structure from a bulk one, and a fairly large number of paramagnetic moments are confined in this region. After eliminating these paramagnetic moments at the surface, we could not find any evidence of an intrinsic ferromagnetic moment in our samples, implying the possibility that the ferromagnetism of A1-xLaxB6 reported so far is neither intrinsic.Comment: 7 pages, 8 figure

    Interlayer Exchange Coupling Mediated by Valence Band Electrons

    Full text link
    The interlayer exchange coupling mediated by valence band electrons in all-semiconductor IV-VI magnetic/nonmagnetic superlattices is studied theoretically. A 3D tight-binding model, accounting for the band and magnetic structure of the constituent superlattice components is used to calculate the spin-dependent part of the total electronic energy. The antiferromagnetic coupling between ferromagnetic layers in EuS/PbS superlattices is obtained, in agreement with the experimental evidences. The results obtained for the coupling between antiferromagnetic layers in EuTe/PbTe superlattices are also presented.Comment: 8 pages, 6 figures, to be submitted to Phys.Rev.

    Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    Get PDF
    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ\textit{in situ} measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic 272 keV neutron source. We report results from a time-of-flight based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.Peer Reviewe

    Correlated spin canting in ordered core-shell Fe3O4/MnxFe3-XO4 nanoparticle assemblies

    Get PDF
    Polarization-analyzed small-angle neutron-scattering methods are used to determine the spin arrangements and experimental length scales of magnetic correlations in ordered three-dimensional assemblies of ∼7.4-nm-diam core-shell Fe3O4/MnxFe3−xO4 nanoparticles. In moderate to high magnetic fields, the assemblies display a canted magnetic structure where the canting direction is coherent from nanoparticle to nanoparticle, in contrast to the less extended, more single-particle-like behavior for similar ferrite assemblies. The observed magnetic scattering is modeled by assuming that the interparticle dipolar coupling combined with Zeeman effects in a field leads to nanoparticle domains with preferred net spin alignments relative to packing symmetry axes. Over a range of fields and temperatures, the model qualitatively explains the observed scattering anomalies in terms of clusters that vary in area and thickness, highlighting the complex structures adopted in real, dense nanoparticle systems. The clusters often have a strong two-dimensional magnetic character which is attributed to structural stacking faults and the resulting influence of interparticle dipolar interactions for these magnetically soft nanoparticles

    Magnetic fluctuations in frustrated Laves hydrides R(Mn_{1-x}Al_{x})_{2}H_{y}

    Full text link
    By neutron scattering, we have studied the spin correlations and spin fluctuations in frustrated Laves hydrides, where magnetic disorder sets in the topologically frustrated Mn lattice. Below the transition towards short range magnetic order, static spin clusters coexist with fluctuating and alsmost uncorrelated spins. The magnetic response shows a complexe lineshape, connected with the presence of the magnetic inhomogeneities. Its analysis shows the existence of two different processes, relaxation and local excitations, for the spin fluctuations below the transition. The paramagnetic fluctuations are discussed in comparison with classical spin glasses, cluster glasses, and non Fermi liquid itinerant magnets

    Magnetic interactions in EuTe epitaxial layers and EuTe/PbTe superlattices

    Full text link
    The magnetic properties of antiferromagnetic (AFM) EuTe epitaxial layers and short period EuTe/PbTe superlattices (SLs), grown by molecular beam epitaxy on (111) BaF2_2 substrates, were studied by magnetization and neutron diffraction measurements. Considerable changes of the N\'eel temperature as a function of the EuTe layer thickness as well as of the strain state were found. A mean field model, taking into account the variation of the exchange constants with the strain-induced lattice distortions, and the nearest neighbor environment of a Eu atoms, was developed to explain the observed TNT_{\text N} changes in wide range of samples. Pronounced interlayer magnetic correlations have been revealed by neutron diffraction in EuTe/PbTe SLs with PbTe spacer thickness up to 60 \AA. The observed diffraction spectra were analyzed, in a kinematical approximation, assuming partial interlayer correlations characterized by an appropriate correlation parameter. The formation of interlayer correlations between the AFM EuTe layers across the nonmagnetic PbTe spacer was explained within a framework of a tight-binding model. In this model, the interlayer coupling stems from the dependence of the total electronic energy of the EuTe/PbTe SL on the spin configurations in adjacent EuTe layers. The influence of the EuTe and PbTe layer thickness fluctuations, inherent in the epitaxial growth process, on magnetic properties and interlayer coupling is discussed.Comment: 17 pages, 19 figures, accepted to PR

    Projected WIMP sensitivity of the LUX-ZEPLIN dark matter experiment

    Get PDF
    LUX-ZEPLIN (LZ) is a next-generation dark matter direct detection experiment that will operate 4850 feet underground at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. Using a two-phase xenon detector with an active mass of 7 tonnes, LZ will search primarily for low-energy interactions with weakly interacting massive particles (WIMPs), which are hypothesized to make up the dark matter in our galactic halo. In this paper, the projected WIMP sensitivity of LZ is presented based on the latest background estimates and simulations of the detector. For a 1000 live day run using a 5.6-tonne fiducial mass, LZ is projected to exclude at 90% confidence level spin-independent WIMP-nucleon cross sections above 1.4 × 10-48cm2 for a 40 GeV/c2 mass WIMP. Additionally, a 5σ discovery potential is projected, reaching cross sections below the exclusion limits of recent experiments. For spin-dependent WIMP-neutron(-proton) scattering, a sensitivity of 2.3 × 10−43 cm2 (7.1 × 10−42 cm2) for a 40 GeV/c2 mass WIMP is expected. With underground installation well underway, LZ is on track for commissioning at SURF in 2020

    The design, implementation, and performance of the LZ calibration systems

    Get PDF
    LUX-ZEPLIN (LZ) is a tonne-scale experiment searching for direct dark matter interactions and other rare events. It is located at the Sanford Underground Research Facility (SURF) in Lead, South Dakota, USA. The core of the LZ detector is a dual-phase xenon time projection chamber (TPC), designed with the primary goal of detecting Weakly Interacting Massive Particles (WIMPs) via their induced low energy nuclear recoils. Surrounding the TPC, two veto detectors immersed in an ultra-pure water tank enable reducing background events to enhance the discovery potential. Intricate calibration systems are purposely designed to precisely understand the responses of these three detector volumes to various types of particle interactions and to demonstrate LZ's ability to discriminate between signals and backgrounds. In this paper, we present a comprehensive discussion of the key features, requirements, and performance of the LZ calibration systems, which play a crucial role in enabling LZ's WIMP-search and its broad science program. The thorough description of these calibration systems, with an emphasis on their novel aspects, is valuable for future calibration efforts in direct dark matter and other rare-event search experiments
    • …
    corecore