12 research outputs found

    Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site

    Get PDF
    Nutrients and faecal contaminants can enter wetland systems in a number of ways, with both biological and potentially human-health implications. In this study we used a combination of inorganic chemistry, dissolved organic matter (DOM) fluorescence and Escherichia coli and total coliform (TC) count techniques to study the sources and multiple pathways of contamination affecting a designated sand dune site of international conservation importance, surrounded by agricultural land. Analysis of stream samples, groundwater and dune slack wetlands revealed multiple input pathways. These included riverbank seepage, runoff events and percolation of nutrients from adjacent pasture into the groundwater, as well as some on-site sources. The combined techniques showed that off-site nutrient inputs into the sand dune system were primarily from fertilisers, revealed by high nitrate concentrations, and relatively low tryptophan-like fulvic-like ratios < 0.4 Raman units (R.U.). The E. coli and TC counts recorded across the site confirm a relatively minor source of bacterial and nutrient inputs from on-site grazers. Attenuation of the nutrient concentrations in streams, in groundwater and in run-off inputs occurs within the site, restoring healthier groundwater nutrient concentrations showing that contaminant filtration by the sand dunes provides a valuable ecosystem service. However, previous studies show that this input of nutrients has a clear adverse ecological impact

    Suitability of aircraft wastewater for pathogen detection and public health surveillance

    Get PDF
    International air travel is now widely recognised as one of the primary mechanisms responsible for the transnational movement and global spread of SARS-CoV-2. Monitoring the viral load and novel lineages within human-derived wastewater collected from aircraft and at air transport hubs has been proposed as an effective way to monitor the importation frequency of viral pathogens. The success of this approach, however, is highly dependent on the bathroom and defecation habits of air passengers during their journey. In this study of UK adults (n = 2103), we quantified the likelihood of defecation prior to departure, on the aircraft and upon arrival on both short- and long-haul flights. The results were then used to assess the likelihood of capturing the signal from infected individuals at UK travel hubs. To obtain a representative cross-section of the population, the survey was stratified by geographical region, gender, age, parenting status, and social class. We found that an individual's likelihood to defecate on short-haul flights ( 6 h in duration). This behaviour pattern was higher among males and younger age groups. The maximum likelihood of defecation was prior to departure (< 39 %). Based on known SARS-CoV-2 faecal shedding rates (30–60 %) and an equal probability of infected individuals being on short- (71 % of inbound flights) and long-haul flights (29 %), we estimate that aircraft wastewater is likely to capture ca. 8–14 % of SARS-CoV-2 cases entering the UK. Monte Carlo simulations predicted that SARS-CoV-2 would be present in wastewater on 14 % of short-haul flights and 62 % of long-haul flights under current pandemic conditions. We conclude that aircraft wastewater alone is insufficient to effectively monitor all the transboundary entries of faecal-borne pathogens but can form part of a wider strategy for public heath surveillance at national borders

    Land management shapes drought responses of dominant soil microbial taxa across grasslands

    Get PDF
    Soil microbial communities are dominated by a relatively small number of taxa that may play outsized roles in ecosystem functioning, yet little is known about their capacities to resist and recover from climate extremes such as drought, or how environmental context mediates those responses. Here, we imposed an in situ experimental drought across 30 diverse UK grassland sites with contrasting management intensities and found that: (1) the majority of dominant bacterial (85%) and fungal (89%) taxa exhibit resistant or opportunistic drought strategies, possibly contributing to their ubiquity and dominance across sites; and (2) intensive grassland management decreases the proportion of drought-sensitive and non-resilient dominant bacteria—likely via alleviation of nutrient limitation and pH-related stress under fertilisation and liming—but has the opposite impact on dominant fungi. Our results suggest a potential mechanism by which intensive management promotes bacteria over fungi under drought with implications for soil functioning

    Saltwater intrusion induces shifts in soil microbial diversity and carbon use efficiency in a coastal grassland ecosystem

    Get PDF
    Salt accumulation and salinisation of coastal soils is a global issue. Further, climate change is likely to increase the amount of land affected by salinity due to the increasing frequency and severity of coastal flooding and brackish water ingress. The impact of this on the ability of soils to deliver ecosystem services, particularly carbon (C) storage, however, remains unclear. We hypothesized that coastal inundation would negatively affect C storage by lowering plant C inputs and by placing greater osmotic stress on the microbial community leading to a reduced C use efficiency (CUE). Here, we use a coastal grassland ecosystem, which is becoming increasingly subjected to sea and brackish water flooding, to explore the relationship between plant/microbial growth and CUE along a natural salinity gradient. To reflect steady state conditions, we traced the turnover and partitioning of a low (ambient) dose and high (growth stimulation) dose of 14C-labelled glucose into microbial anabolic and catabolic pools, from which microbial CUE was calculated. This was supported by measurements of the diversity of the bacterial community across the salinity gradient using 16S metabarcoding. Our results showed that coastal flooding significantly reduced plant growth (p < 0.005), increased soil C content (p < 0.05) and induced an increase in microbial CUE under low glucose-C conditions (p < 0.05). Conversely, no significant difference in CUE or microbial growth was apparent when a high glucose-C dose was used. Soil bacterial community alpha (α) diversity increased with soil salinity while beta (β) diversity also shifted in response to the higher saline conditions. Our analysis suggests that the largest impact of coastal flooding on soil C cycling was the inability of the plant community to adapt, leading to higher plant residue inputs as well as the decline in soil structure. Conversely, the microbial community had adapted to the increased salinity, resulting in only small changes in the uptake and metabolic partitioning of C

    Are researchers following best storage practices for measuring soil biochemical properties?

    Get PDF
    It is widely accepted that the measurement of organic and inorganic forms of carbon (C) and nitrogen (N) in soils should be performed on fresh extracts taken from fresh soil samples. However, this is often not possible, and it is common practice to store samples (soils and/or extracts), despite a lack of guidance on best practice. We utilised a case study on a temperate grassland soil taken from different depths to demonstrate how differences in soil and/or soil extract storage temperature (4 or -20 °C) and duration can influence sample integrity for the quantification of soil-dissolved organic C and N (DOC and DON), extractable inorganic nitrogen (NHC+4and NO-3) and microbial biomass C and N (MBC and MBN). The appropriateness of different storage treatments varied between topsoils and subsoils, highlighting the need to consider appropriate storage methods based on soil depth and soil properties. In general, we found that storing soils and extracts by freezing at -20 °C was least effective at maintaining measured values of fresh material, whilst refrigerating (4 °C) soils for less than a week for DOC and DON and up to a year for MBC and MBN and refrigerating soil extracts for less than a week for NHC+4and NO-3did not jeopardise sample integrity. We discuss and provide the appropriate tools to ensure researchers consider best storage practice methods when designing and organising ecological research involving assessments of soil properties related to C and N cycling.We encourage researchers to use standardised methods where possible and to report their storage treatment (i.e. temperature, duration) when publishing findings on aspects of soil and ecosystem functioning. In the absence of published storage recommendations for a given soil type, we encourage researchers to conduct a pilot study and publish their findings

    Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought

    No full text
    Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought

    Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought

    No full text
    Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought
    corecore