18 research outputs found

    In Vitro Hepatic Assessment of Cineole and Its Derivatives in Common Brushtail Possums (<em>Trichosurus vulpecula</em>) and Rodents

    No full text
    Folivore marsupials, such as brushtail possum (Trichosurus Vulpecula) and koala (Phascolarctos cinereus), can metabolise higher levels of dietary terpenes, such as cineole, that are toxic to eutherian mammals. While the highly efficient drug metabolising enzymes, cytochrome P450 3A (CYP3A) and phase II conjugating enzymes (UDP-glucuronosyltransferase, UGT), are involved in the metabolism of high levels of dietary terpenes, evidence for inhibitory actions on these enzymes by these terpenes is scant. Thus, this study investigated the effect of cineole and its derivatives on catalytic activities of hepatic CYP3A and UGT in mice, rats, and possums. Results showed that cineole (up to 50 µM) and its derivatives (up to 25 µM) did not significantly inhibit CYP3A and UGT activities in mice, rats, and possums (both in silico and in vitro). Interestingly, basal hepatic CYP3A catalytic activity in the possums was ~20% lower than that in rats and mice. In contrast, possums had ~2-fold higher UGT catalytic activity when compared to mice and rats. Thus, these basal enzymatic differences may be further exploited in future pest management strategies

    A multivariate statistical analysis of the effects of styrene maleic acid encapsulated RL71 in a xenograft model of triple negative breast cancer

    No full text
    We have previously shown that the curcumin derivative 3,5-bis(3,4,5-trimethoxybenzylidene)-1-methylpiperidine-4-one (RL71), when encapsulated in styrene maleic acid micelles (SMA-RL71), significantly suppressed the growth of MDAMB-231 xenografts by 67%. Univariate statistical analysis showed that pEGFR/EGFR, pAkt/Akt, pmTOR/mTOR and p4EBP1/4EPBP1 were all significantly decreased in tumors from treated mice compared to SMA controls. In this study, multivariate statistical analyses (MVAs) were performed to identify the molecular networks that worked together to drive tumor suppression, with the aim to determine if this analysis could also be used to predict treatment outcome. Linear discriminant analysis correctly predicted, to 100% certainty, mice that received SMA-RL71 treatment. Additionally, results from multiple linear regression showed that the expression of Ki67, PKC-α, PP2AA-α, PP2AA-β and CaD1 networked together to drive tumor growth suppression. Overall, the MVAs provided evidence for a molecular network of signaling proteins that drives tumor suppression in response to SMA-RL71 treatment, which should be explored further in animal studies of cancer

    A Novel Role for Raloxifene Nanomicelles in Management of Castrate Resistant Prostate Cancer

    No full text
    Of patients with castrate resistant prostate cancer (CRPC), less than 25–33% survive more than five years. Recent studies have implicated estrogen, acting either alone or synergistically with androgens in the development of castrate resistant prostate cancer. Several in vitro and in vivo studies, as well as a limited number of clinical trials, have highlighted the potential of selective estrogen receptor modulators, such as raloxifene (Ral) for the treatment of castrate resistant prostate cancer. However, the poor oral bioavailability and metabolism of selective estrogen receptor modulators limit their efficiency in clinical application. To overcome these limitations, we have used styrene co-maleic acid (SMA) micelle to encapsulate raloxifene. Compared to free drug, SMA-Ral micelles had 132 and 140% higher cytotoxicity against PC3 and DU 145 prostate cell lines, respectively. SMA-Ral effectively inhibits cell cycle progression, increases apoptosis, and alters the integrity of tumor spheroid models. In addition, the micellar system induced changes in expression and localization of estrogen receptors, epidermal growth factor receptor (EGFR), and downstream effectors associated with cell proliferation and survival. Finally, SMA-Ral treatment decreased migration and invasion of castrate resistant prostate cancer cell lines. In conclusion, SMA-Ral micelles can potentially benefit new strategies for clinical management of castrate resistant prostate cancer

    Raloxifene Suppresses Tumor Growth and Metastasis in an Orthotopic Model of Castration-Resistant Prostate Cancer

    No full text
    Androgen receptor (AR)-castrate-resistant prostate cancer (CRPC) is an aggressive form of prostate cancer that does not have clinically approved targeted treatment options. To this end, the cytotoxic potential of raloxifene and the synthetic curcumin derivative 2,6-bis (pyridin-4-ylmethylene)-cyclohexanone (RL91) was examined in AR-(PC3 and DU145) cells and AR+ (LnCaP) CRPC cells. The results showed that both raloxifene and RL91 elicited significant cytotoxicity across three cell lines with the lowest EC50 values in PC3 cells. Additionally, the two drugs were synergistically cytotoxic toward the PC3, DU-145 and LNCaP cell lines. To determine the effect of the drug combination in vivo, an orthotopic model of CRPC was used. Male mice were injected with PC3 prostate cancer cells and then treated with vehicle (5 mL/kg), raloxifene (8.5 mg/kg, po), RL91 (8.5 mg/kg, po) or a combination of raloxifene and RL91 for six weeks. Sham animals were subjected to the surgical procedure but were not implanted with PC3 cells. The results showed that raloxifene decreased tumor size and weight as well as metastasis to renal lymph nodes. However, combination treatment reversed the efficacy of raloxifene as tumor volume and metastasis returned to control levels. The results suggest that raloxifene has tumor suppressive and anti-metastatic effects and has potential for further clinical use in AR-CRPC

    Anti-Proliferative, Anti-Angiogenic and Safety Profiles of Novel HDAC Inhibitors for the Treatment of Metastatic Castration-Resistant Prostate Cancer

    No full text
    Metastatic castration-resistant prostate cancer (CRPC) has a five-year survival rate of 28%. As histone deacetylases (HDACs) are overexpressed in CRPC, the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) was trialled in CRPC patients but found to be toxic and inefficacious. Previously, we showed that novel HDAC inhibitors (Jazz90 (N1-hydroxy-N8-(4-(pyridine-2-carbothioamido)phenyl)octanediamide) and Jazz167 ([chlorido(η5-pentamethylcyclopentadieny[1–4](N1-hydroxy-N8-(4-(pyridine-2-carbothioamido-κ2N,S)phenyl)octanediamide)rhodium(III)] chloride) had a higher cancer-to-normal-cell selectivity and superior anti-angiogenic effects in CRPC (PC3) cells than SAHA. Thus, this study aimed to further investigate the efficacy and toxicity of these compounds. HUVEC tube formation assays revealed that Jazz90 and Jazz167 significantly reduced meshes and segment lengths in the range of 55–88 and 43–64%, respectively. However, Jazz90 and Jazz167 did not affect the expression of epithelial-to-mesenchymal transitioning markers E-cadherin and vimentin. Jazz90 and Jazz167 significantly inhibited the growth of PC3 and DU145 spheroids and reduced PC3 spheroid branching. Jazz90 and Jazz167 (25, 50 and 75 mg/kg/day orally for 21 days) were non-toxic in male BALB/c mice. The efficacy and safety of these compounds demonstrate their potential for further in vivo studies in CRPC models
    corecore