65 research outputs found
Thickness dependence of electron-electron interactions in topological p-n junctions
Electron-electron interactions in topological p-n junctions consisting of
vertically stacked topological insulators are investigated. n-type Bi2Te3 and
p-type Sb2Te3 of varying relative thicknesses are deposited using molecular
beam epitaxy and their electronic properties measured using low-temperature
transport. The screening factor is observed to decrease with increasing sample
thickness, a finding which is corroborated by semi-classical Boltzmann theory.
The number of two-dimensional states determined from electron-electron
interactions is larger compared to the number obtained from
weak-antilocalization, in line with earlier experiments using single layers.Comment: 38 pages, 5 figures, 1 tabl
Animacy and real-world size shape object representations in the human medial temporal lobes
Identifying what an object is, and whether an object has been encountered before, is a crucial aspect of human behavior. Despite this importance, we do not yet have a complete understanding of the neural basis of these abilities. Investigations into the neural organization of human object representations have revealed category specific organization in the ventral visual stream in perceptual tasks. Interestingly, these categories fall within broader domains of organization, with reported distinctions between animate, inanimate large, and inanimate small objects. While there is some evidence for category specific effects in the medial temporal lobe (MTL), in particular in perirhinal and parahippocampal cortex, it is currently unclear whether domain level organization is also present across these structures. To this end, we used fMRI with a continuous recognition memory task. Stimuli were images of objects from several different categories, which were either animate or inanimate, or large or small within the inanimate domain. We employed representational similarity analysis (RSA) to test the hypothesis that object-evoked responses in MTL structures during recognition-memory judgments also show evidence for domain-level organization along both dimensions. Our data support this hypothesis. Specifically, object representations were shaped by either animacy, real-world size, or both, in perirhinal and parahippocampal cortex, and the hippocampus. While sensitivity to these dimensions differed across structures when probed individually, hinting at interesting links to functional differentiation, similarities in organization across MTL structures were more prominent overall. These results argue for continuity in the organization of object representations in the ventral visual stream and the MTL
Computational analyses of the surface properties of protein–protein interfaces
This paper presents a survey of techniques that explore the surface properties of protein:protein interfaces so as to inform the prediction of probable sites of protein:protein interaction on newly determined protein structures
Recent advances in acoustic diagnostics for electrochemical power systems
Acknowledgments The authors would like to gratefully acknowledge the EPSRC for supporting the electrochemical research in the Electrochemical Innovation Lab (EP/R020973/1; EP/R023581/1; EP/N032888/1; EP/R023581/1; EP/P009050/1; EP/M014371/1; EP/M009394; EP/L015749/1; EP/K038656/1) and Innovate UK for funding the VALUABLE project (Grant No. 104182). The authors would also like to acknowledge the Royal Academy of Engineering for funding Robinson and Shearing through ICRF1718\1\34 and CiET1718 respectively and the Faraday Institution (EP/S00353/1, Grant Nos. FIRG003, FIRG014). The authors also acknowledge the STFC for supporting Shearing and Brett (ST/K00171X/1) and ACEA for supporting ongoing research at the EIL. Support from the National Measurement System of the UK Department for Business, Energy and Industrial Strategy is also gratefully acknowledged.Peer reviewedPublisher PD
Thermal Runaway of Li-Ion Cells: How Internal Dynamics, Mass Ejection, and Heat Vary with Cell Geometry and Abuse Type
Thermal runaway of lithium-ion batteries can involve various types of failure mechanisms each with their own unique characteristics. Using fractional thermal runaway calorimetry and high-speed radiography, the response of three different geometries of cylindrical cell (18650, 21700, and D-cell) to different abuse mechanisms (thermal, internal short circuiting, and nail penetration) are quantified and statistically examined. Correlations between the geometry of cells and their thermal behavior are identified, such as increasing heat output per amp-hour (kJ Ah-1) of cells with increasing cell diameter during nail penetration. High-speed radiography reveals that the rate of thermal runaway propagation within cells is generally highest for nail penetration where there is a relative increase in rate of propagation with increasing diameter, compared to thermal or internal short-circuiting abuse. For a given cell model tested under the same conditions, a distribution of heat output is observed with a trend of increasing heat output with increased mass ejection. Finally, internal temperature measurements using thermocouples embedded in the penetrating nail are shown to be unreliable thus demonstrating the need for care when using thermocouples where the temperature is rapidly changing. All data used in this manuscript are open access through the NREL and NASA Battery Failure Databank
Thickness dependence of electron-electron interactions in topological p-n junctions
Electron-electron interactions in topological p-n junctions consisting of vertically stacked topological insulators are investigated. n-type Bi2Te3 and p-type Sb2Te3 of varying relative thicknesses are deposited using molecular beam epitaxy and their electronic properties measured using low-temperature transport. The screening factor is observed to decrease with increasing sample thickness, a finding which is corroborated by semi-classical Boltzmann theory. The number of two-dimensional states determined from electron-electron interactions is larger compared to the number obtained from weak-antilocalization, in line with earlier experiments using single layers
Multiscale dynamics of charging and plating in graphite electrodes coupling operando microscopy and phase-field modelling
The phase separation dynamics in graphitic anodes significantly affects lithium plating propensity, which is the major degradation mechanism that impairs the safety and fast charge capabilities of automotive lithium-ion batteries. In this study, we present comprehensive investigation employing operando high-resolution optical microscopy combined with non-equilibrium thermodynamics implemented in a multi-dimensional (1D+1D to 3D) phase-field modeling framework to reveal the rate-dependent spatial dynamics of phase separation and plating in graphite electrodes. Here we visualize and provide mechanistic understanding of the multistage phase separation, plating, inter/intra-particle lithium exchange and plated lithium back-intercalation phenomena. A strong dependence of intra-particle lithiation heterogeneity on the particle size, shape, orientation, surface condition and C-rate at the particle level is observed, which leads to early onset of plating spatially resolved by a 3D image-based phase-field model. Moreover, we highlight the distinct relaxation processes at different state-of-charges (SOCs), wherein thermodynamically unstable graphite particles undergo a drastic intra-particle lithium redistribution and inter-particle lithium exchange at intermediate SOCs, whereas the electrode equilibrates much slower at low and high SOCs. These physics-based insights into the distinct SOC-dependent relaxation efficiency provide new perspective towards developing advanced fast charge protocols to suppress plating and shorten the constant voltage regime
Topological states and phase transitions in Sb2Te3-GeTe multilayers
Topological insulators (TIs) are bulk insulators with exotic ‘topologically protected’ surface conducting modes. It has recently been pointed out that when stacked together, interactions between surface
modes can induce diverse phases including the TI, Dirac semimetal, and Weyl semimetal. However, currently a full experimental understanding of the conditions under which topological modes interact is lacking. Here, working with multilayers of the TI Sb2Te3 and the band insulator GeTe, we provide
experimental evidence of multiple topological modes in a single Sb2Te3-GeTe-Sb2Te3 structure. Furthermore, we show that reducing the thickness of the GeTe layer induces a phase transition from a
Dirac-like phase to a gapped phase. By comparing different multilayer structures we demonstrate that this transition occurs due to the hybridisation of states associated with different TI films. Our results demonstrate that the Sb2Te3-GeTe system offers strong potential towards manipulating topological states as well as towards controlledly inducing various topological phases
- …