1,188 research outputs found

    Exchange Current Corrections to Neutrino--Nucleus Scattering

    Get PDF
    Relativistic exchange current corrections to neutrino--nucleus cross sections are presented assuming non--vanishing strange quark form factors for the constituent nucleons. For charged current processes the exchange current corrections can lower the impulse approximation results by 10\% while these corrections are found to be sensitive to both the nuclear density and the strange quark axial form factor of the nucleon for neutral current processes. Implications on the LSND experiment to determine this form factor are discussed.Comment: 11 pages, 2 figures, revtex 3.0, full postscript version of the file and figures available at http://www.nikhefk.nikhef.nl/projects/Theory/preprints/preprints.html To appear in Phys. Rev. Lett

    The Solar hep Process in Effective Field Theory

    Full text link
    Using effective field theory, we calculate the S-factor for the hep process in a totally parameter-free formulation. The transition operators are organized according to chiral counting, and their matrix elements are evaluated using the realistic nuclear wave functions obtained in the correlated-hyperspherical-harmonics method. Terms of up to next-to-next-to-next-to-leading order in heavy-baryon chiral perturbation theory are considered. Fixing the only parameter in the theory by fitting the tritium \beta-decay rate, we predict the hep S-factor with accuracy better than \sim 20 %.Comment: 4 pages, Revtex. Minor revision has been mad

    Parameter-Free Calculation of the Solar Proton Fusion Rate in Effective Field Theory

    Get PDF
    Spurred by the recent complete determination of the weak currents in two-nucleon systems up to O(Q3){\cal O}(Q^3) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the solar proton fusion rate in an effective field theory that combines the merits of the standard nuclear physics method and systematic chiral expansion. Using the tritium beta-decay rate as an input to fix the only unknown parameter in the effective Lagrangian, we can evaluate with drastically improved precision the ratio of the two-body contribution to the well established one-body contribution; the ratio is determined to be (0.86\pm 0.05) %. This result is essentially independent of the cutoff parameter for a wide range of its variation (500 MeV \le \Lambda \le 800 MeV), a feature that substantiates the consistency of the calculation.Comment: 10 pages. The argument is considerably more sharpened with a reduced error ba

    Magnetic properties of pure and Gd doped EuO probed by NMR

    Full text link
    An Eu NMR study in the ferromagnetic phase of pure and Gd doped EuO was performed. A complete description of the NMR lineshape of pure EuO allowed for the influence of doping EuO with Gd impurities to be highlighted. The presence of a temperature dependent static magnetic inhomogeneity in Gd doped EuO was demonstrated by studying the temperature dependence of the lineshapes. The results suggest that the inhomogeneity in 0.6% Gd doped EuO is linked to colossal magnetoresistance. The measurement of the spin-lattice relaxation times as a function of temperature led to the determination of the value of the exchange integral J as a function of Gd doping. It was found that J is temperature independent and spatially homogeneous for all the samples and that its value increases abruptly with increasing Gd doping.Comment: 14 pages, 10 figures, to be published in Physical Review

    X-rays and Protostars in the Trifid Nebula

    Get PDF
    The Trifid Nebula is a young HII region recently rediscovered as a "pre-Orion" star forming region, containing protostars undergoing violent mass ejections visible in optical jets as seen in images from the Infrared Space Observatory and the Hubble Space Telescope. We report the first X-ray observations of the Trifid nebula using ROSAT and ASCA. The ROSAT image shows a dozen X-ray sources, with the brightest X-ray source being the O7 star, HD 164492, which provides most of the ionization in the nebula. We also identify 85 T Tauri star and young, massive star candidates from near-infrared colors using the JHKs color-color diagram from the Two Micron All Sky Survey (2MASS). Ten X-ray sources have counterpart near-infrared sources. The 2MASS stars and X-ray sources suggest there are potentially numerous protostars in the young HII region of the Trifid. ASCA moderate resolution spectroscopy of the brightest source shows hard emission up to 10 keV with a clearly detected Fe K line. The best model fit is a two-temperature (T = 1.2x10^6 K and 39x10^6 K) thermal model with additional warm absorbing media. The hotter component has an unusually high temperature for either an O star or an HII region; a typical Galactic HII region could not be the primary source for such hot temperature plasma and the Fe XXV line emission. We suggest that the hotter component originates in either the interaction of the wind with another object (a companion star or a dense region of the nebula) or from flares from deeply embedded young stars.Comment: Accepted in ApJ (Oct, 20 issue, 2001

    Parameter-free effective field theory calculation for the solar proton-fusion and hephep processes

    Get PDF
    Spurred by the recent complete determination of the weak currents in two-nucleon systems up to O(Q3){\cal O}(Q^3) in heavy-baryon chiral perturbation theory, we carry out a parameter-free calculation of the threshold SS-factors for the solar pppp (proton-fusion) and hephep processes in an effective field theory that {\it combines} the merits of the standard nuclear physics method and systematic chiral expansion. The power of the EFT adopted here is that one can correlate in a unified formalism the weak-current matrix elements of two-, three- and four-nucleon systems. Using the tritium ÎČ\beta-decay rate as an input to fix the only unknown parameter in the theory, we can evaluate the threshold SS factors with drastically improved precision; the results are Spp(0)=3.94×(1±0.004)×10−25MeV−bS_{pp}(0) = 3.94\times(1 \pm 0.004) \times 10^{-25} {MeV-b} and Shep(0)=(8.6±1.3)×10−20keV−bS_{hep}(0) = (8.6\pm 1.3)\times 10^{-20} {keV-b}. The dependence of the calculated SS-factors on the momentum cutoff parameter Λ\Lambda has been examined for a physically reasonable range of Λ\Lambda. This dependence is found to be extremely small for the pppp process, and to be within acceptable levels for the hephep process, substantiating the consistency of our calculational scheme

    Evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1−x_{1-x}Gdx_{x}O

    Full text link
    Raman scattering studies as functions of temperature, magnetic field, and Gd-substitution are used to investigate the evolution of magnetic polarons and spin-carrier interactions through the metal-insulator transition in Eu1−x_{1-x}Gdx_{x}O. These studies reveal a greater richness of phase behavior than have been previously observed using transport measurements: a spin-fluctuation-dominated paramagnetic (PM) phase regime for T >> T∗^{*} >> TC_{C}, a two-phase regime for T << T∗^{*} in which magnetic polarons develop and coexist with a remnant of the PM phase, and an inhomogeneous ferromagnetic phase regime for T << TC_{C}

    1/N_c Expansion of the Heavy Baryon Isgur-Wise Functions

    Get PDF
    The 1/N_c expansion of the heavy baryon Isgur-Wise functions is discussed. Because of the contracted SU(2N_f) light quark spin-flavor symmetry, the universality relations among the Isgur-Wise functions of \Lambda_b to \Lambda_c and \Sigma_b^{(*)} to \Sigma_c^{(*)} are valid up to the order of 1/N_c^2.Comment: 7 pages, latex, no figures, to appear in Phys. Rev.
    • 

    corecore