8,060 research outputs found

    The dynamics of Abell 2634

    Get PDF
    We have amassed a large sample of velocity data for the cluster of galaxies Abell 2634 which contains the wide-angle tail (WAT) radio source 3C 465. Robust indicators of location and scale and their confidence intervals are used to determine if the cD galaxy, containing the WAT, has a significant peculiar motion. We find a cD peculiar radial velocity of 219 plus or minus 98 km s(exp -1). Further dynamical analyses, including substructure and normality tests, suggest that A 2634 is an unrelaxed cluster whose radio source structure may be bent by the turbulent gas of a recent cluster-subcluster merger

    Boundary effects on the scaling of the superfluid density

    Full text link
    We study numerically the influence of the substrate (boundary conditions) on the finite--size scaling properties of the superfluid density ρs\rho_s in superfluid films of thickness HH within the XY model employing the Monte Carlo method. Our results suggest that the jump ρsH/Tc\rho_s H/T_c at the Kosterlitz--Thouless transition temperature TcT_c depends on the boundary conditions.Comment: 2 pages, 1 Latex file, 1 postscript figure, 2 style file

    Role of appetitive phenotype trajectory groups on child body weight during a family-based treatment for children with overweight or obesity.

    Get PDF
    ObjectiveEmerging evidence suggests that individual appetitive traits may usefully explain patterns of weight loss in behavioral weight loss treatments for children. The objective of this study was to identify trajectories of child appetitive traits and the impact on child weight changes over time.MethodsSecondary data analyses of a randomized noninferiority trial conducted between 2011 and 2015 evaluated children's appetitive traits and weight loss. Children with overweight and obesity (mean age = 10.4; mean BMI z = 2.0; 67% girls; 32% Hispanic) and their parent (mean age = 42.9; mean BMI = 31.9; 87% women; 31% Hispanic) participated in weight loss programs and completed assessments at baseline, 3, 6,12, and 24 months. Repeated assessments of child appetitive traits, including satiety responsiveness, food responsiveness and emotional eating, were used to identify parsimonious grouping of change trajectories. Linear mixed-effects models were used to identify the impact of group trajectory on child BMIz change over time.ResultsOne hundred fifty children and their parent enrolled in the study. The three-group trajectory model was the most parsimonious and included a high satiety responsive group (HighSR; 47.4%), a high food responsive group (HighFR; 34.6%), and a high emotional eating group (HighEE; 18.0%). Children in all trajectories lost weight at approximately the same rate during treatment, however, only the HighSR group maintained their weight loss during follow-ups, while the HighFR and HighEE groups regained weight (adjusted p-value < 0.05).ConclusionsDistinct trajectories of child appetitive traits were associated with differential weight loss maintenance. Identified high-risk subgroups may suggest opportunities for targeted intervention and maintenance programs

    Superconducting gap structure of the 115's revisited

    Full text link
    Density functional theory calculations of the electronic structure of Ce- and Pu-based heavy fermion superconductors in the so-called 115 family are performed. The gap equation is used to consider which superconducting order parameters are most favorable assuming a pairing interaction that is peaked at (\pi,\pi,q_z) - the wavevector for the antiferromagnetic ordering found in close proximity. In addition to the commonly accepted dx2y2d_{x^2-y^2} order parameter, there is evidence that an extended s-wave order parameter with nodes is also plausible. We discuss whether these results are consistent with current observations and possible measurements that could help distinguish between these scenarios.Comment: 8 pages, 4 figures; Accepted for publication in JPC

    The Ellipticity and Orientation of Clusters of Galaxies from N-Body Experiments

    Get PDF
    In this study we use simulations of 1283^3 particles to study the ellipticity and orientation of clusters of galaxies in N-body simulations of differing power-law initial spectra (P(k) \propto k^n ,n = +1, 0, -1, -2),anddensityparameters(), and density parameters (\Omega_0 = 0.2to1.0).Furthermore,unlikemosttheoreticalstudieswemimicmostobserversbyremovingallparticleswhichlieatdistancesgreaterthan21/hMpcfromtheclustercenterofmass.Wecomputedtheaxialratioandtheprincipalaxesusingtheinertiatensorofeachcluster.Themeanellipticityofclustersincreasesstronglywithincreasing to 1.0). Furthermore, unlike most theoretical studies we mimic most observers by removing all particles which lie at distances greater than 2 1/h Mpc from the cluster center of mass. We computed the axial ratio and the principal axes using the inertia tensor of each cluster. The mean ellipticity of clusters increases strongly with increasing n.Wealsofindthatclusterstendtobecomemoresphericalatsmallerradii.Wecomparedtheorientationofaclustertotheorientationofneighboringclustersasafunctionofdistance(correlation).Inaddition,weconsideredwhetheraclustersmajoraxistendstoliealongthelineconnectingittoaneighboringcluster,asafunctionofdistance(alignment).Bothalignmentsandcorrelationswerecomputedinthreedimensionsandinprojectiontomimicobservationalsurveys.Ourresultsshowthatsignificantalignmentsexistforallspectraatsmallseparations(. We also find that clusters tend to become more spherical at smaller radii. We compared the orientation of a cluster to the orientation of neighboring clusters as a function of distance (correlation). In addition, we considered whether a cluster's major axis tends to lie along the line connecting it to a neighboring cluster, as a function of distance (alignment). Both alignments and correlations were computed in three dimensions and in projection to mimic observational surveys. Our results show that significant alignments exist for all spectra at small separations (D < 15 h^{-1}Mpc)butdropsoffatlargerdistanceinastrongly Mpc) but drops off at larger distance in a strongly n-$dependent way.Comment: 22 pages, requires aaspp4.sty, flushrt.sty, and epsf.sty Revised manuscript, accepted for publication in Ap

    Alignments of Voids in the Cosmic Web

    Get PDF
    We investigate the shapes and mutual alignment of voids in the large scale matter distribution of a LCDM cosmology simulation. The voids are identified using the novel WVF void finder technique. The identified voids are quite nonspherical and slightly prolate, with axis ratios in the order of c:b:a approx. 0.5:0.7:1. Their orientations are strongly correlated with significant alignments spanning scales >30 Mpc/h. We also find an intimate link between the cosmic tidal field and the void orientations. Over a very wide range of scales we find a coherent and strong alignment of the voids with the tidal field computed from the smoothed density distribution. This orientation-tide alignment remains significant on scales exceeding twice the typical void size, which shows that the long range external field is responsible for the alignment of the voids. This confirms the view that the large scale tidal force field is the main agent for the large scale spatial organization of the Cosmic Web.Comment: 10 pages, 4 figures, submitted to MNRAS, for high resolution version, see http://www.astro.rug.nl/~weygaert/tim1publication/voidshape.pd

    The Hobby-Eberly Telescope Chemical Abundances Of Stars In The Halo (CASH) Project. I. The Lithium-, s-, And r-Enhanced Metal-Poor Giant HKII 17435-00532

    Get PDF
    We present the first detailed abundance analysis of the metal-poor giant HKII 17435-00532. This star was observed as part of the University of Texas long-term project Chemical Abundances of Stars in the Halo ( CASH). A spectrum was obtained with the High Resolution Spectrograph (HRS) on the Hobby-Eberly Telescope with a resolving power of R similar to 15,000. Our analysis reveals that this star may be located on the red giant branch, red horizontal branch, or early asymptotic giant branch. We find that this metal-poor (Fe/H = -2.2) star has an unusually high lithium abundance [log epsilon(Li) +2.1], mild carbon (C/Fe = +0.7) and sodium (]Na/Fe] = +0.6) enhancement, as well as enhancement of both s-process ([Ba/Fe] = +0.8) and r-process ([Eu/Fe] = +0.5) material. The high Li abundance can be explained by self-enrichment through extra mixing that connects the convective envelope with the outer regions of the H-burning shell. If so, HKII 17435-00532 is the most metal-poor star in which this short-lived phase of Li enrichment has been observed. The Na and n-capture enrichment can be explained by mass transfer from a companion that passed through the thermally pulsing AGB phase of evolution with only a small initial enrichment of r-process material present in the birth cloud. Despite the current nondetection of radial velocity variations (over similar to 180 days), it is possible that HKII 17435 - 00532 is in a long-period or highly inclined binary system, similar to other stars with similar n-capture enrichment patterns.NASA AAS Small Research Grant ProgramGALEX GI 05-GALEX05-27Italian MIUR-PRIN06 ProjectNSF AST 06-07708, AST04-06784, AST 07-0776, PHY 02-15783JINA AST 07-07447Astronom

    Exploring Halo Substructure with Giant Stars III: First Results from the Grid Giant Star Survey and Discovery of a Possible Nearby Sagittarius Tidal Structure in Virgo

    Get PDF
    We describe first results of a spectroscopic probe of selected fields from the Grid Giant Star Survey. Multifiber spectroscopy of several hundred stars in a strip of eleven fields along delta approximately -17^{circ}, in the range 12 <~ alpha <~ 17 hours, reveals a group of 8 giants that have kinematical characteristics differing from the main field population, but that as a group maintain coherent, smoothly varying distances and radial velocities with position across the fields. Moreover, these stars have roughly the same abundance, according to their MgH+Mgb absorption line strengths. Photometric parallaxes place these stars in a semi-loop structure, arcing in a contiguous distribution between 5.7 and 7.9 kpc from the Galactic center. The spatial, kinematical, and abundance coherence of these stars suggests that they are part of a diffuse stream of tidal debris, and one roughly consistent with a wrapped, leading tidal arm of the Sagittarius dwarf spheroidal galaxy.Comment: 8 pages including 4 figures. Accepted for publication in ApJ

    The Origin of the Brightest Cluster Galaxies

    Get PDF
    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centres which far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive, central galaxy with surface brightness and velocity dispersion profiles similar to observed BCG's. To enhance the resolution of the simulation, 100 dark halos at z=2z=2 are replaced with self-consistent disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000 particles for the 20 largest galaxies and 10000 particles for the remaining ones. This technique allows us to analyze the stellar and dark matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution agreeing with observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version available at http://www.cita.utoronto.ca/~dubinski/bcg

    The Specific Heat of a Ferromagnetic Film.

    Full text link
    We analyze the specific heat for the O(N)O(N) vector model on a dd-dimensional film geometry of thickness LL using ``environmentally friendly'' renormalization. We consider periodic, Dirichlet and antiperiodic boundary conditions, deriving expressions for the specific heat and an effective specific heat exponent, \alpha\ef. In the case of d=3d=3, for N=1N=1, by matching to the exact exponent of the two dimensional Ising model we capture the crossover for \xi_L\ra\infty between power law behaviour in the limit {L\over\xi_L}\ra\infty and logarithmic behaviour in the limit {L\over\xi_L}\ra0 for fixed LL, where ξL\xi_L is the correlation length in the transverse dimensions.Comment: 21 pages of Plain TeX. Postscript figures available upon request from [email protected]
    corecore