2,724 research outputs found
Material-independent crack arrest statistics: Application to indentation experiments
An extensive experimental study of indentation and crack arrest statistics is
presented for four different brittle materials (alumina, silicon carbide,
silicon nitride, glass). Evidence is given that the crack length statistics can
be described by a universal (i.e. material independent) distribution. The
latter directly derives from results obtained when modeling crack propagation
as a depinning phenomenon. Crack arrest (or effective toughness) statistics
appears to be fully characterized by two parameters, namely, an asymptotic
crack length (or macroscopic toughness) value and a power law size dependent
width. The experimental knowledge of the crack arrest statistics at one given
scale thus gives access to its knowledge at all scales
Gene expression changes associated with Barrett's esophagus and Barrett's-associated adenocarcinoma cell lines after acid or bile salt exposure
<p>Abstract</p> <p>Background</p> <p>Esophageal reflux and Barrett's esophagus represent two major risk factors for the development of esophageal adenocarcinoma. Previous studies have shown that brief exposure of the Barrett's-associated adenocarcinoma cell line, SEG-1, or primary cultures of Barrett's esophageal tissues to acid or bile results in changes consistent with cell proliferation. In this study, we determined whether similar exposure to acid or bile salts results in gene expression changes that provide insights into malignant transformation.</p> <p>Methods</p> <p>Using previously published methods, Barrett's-associated esophageal adenocarcinoma cell lines and primary cultures of Barrett's esophageal tissue were exposed to short pulses of acid or bile salts followed by incubation in culture media at pH 7.4. A genome-wide assessment of gene expression was then determined for the samples using cDNA microarrays. Subsequent analysis evaluated for statistical differences in gene expression with and without treatment.</p> <p>Results</p> <p>The SEG-1 cell line showed changes in gene expression that was dependent on the length of exposure to pH 3.5. Further analysis using the Gene Ontology, however, showed that representation by genes associated with cell proliferation is not enhanced by acid exposure. The changes in gene expression also did not involve genes known to be differentially expressed in esophageal adenocarcinoma. Similar experiments using short-term primary cultures of Barrett's esophagus also did not result in detectable changes in gene expression with either acid or bile salt exposure.</p> <p>Conclusion</p> <p>Short-term exposure of esophageal adenocarcinoma SEG-1 cells or primary cultures of Barrett's esophagus does not result in gene expression changes that are consistent with enhanced cell proliferation. Thus other model systems are needed that may reflect the impact of acid and bile salt exposure on the esophagus <it>in vivo</it>.</p
Lessons Learned from the European Cardiovascular Magnetic Resonance (EuroCMR) Registry Pilot Phase
The data from 11,040 patients of the European Cardiovascular Magnetic Resonance (EuroCMR) registry pilot phase offer the first documentation of the clinical use of CMR in a routine setting. The pilot data show that CMR is frequently performed in clinical practice, is a safe procedure with excellent image quality, and has a strong impact on patient management. In the future, the EuroCMR registry will help to set international benchmarks on appropriate indications, quality, and safety of CMR. In addition, outcome and cost effectiveness will be addressed on an international level in order to develop optimized imaging-guided clinical pathways and to avoid unnecessary or even harmful testing
The effectiveness of public health interventions to reduce the health impact of climate change:a systematic review of systematic reviews
Climate change is likely to be one of the most important threats to public health in the coming years. Yet despite the large number of papers considering the health impact of climate change, few have considered what public health interventions may be of most value in reducing the disease burden. We aimed to evaluate the effectiveness of public health interventions to reduce the disease burden of high priority climate sensitive diseases
Evolutionary Dead End in the Galápagos: Divergence of Sexual Signals in the Rarest of Darwin's Finches
Understanding the mechanisms underlying speciation remains a challenge in evolutionary biology. The adaptive radiation of Darwin's finches is a prime example of species formation, and their study has revealed many important insights into evolutionary processes. Here, we report striking differences in mating signals (songs), morphology and genetics between the two remnant populations of Darwin's mangrove finch Camarhynchus heliobates, one of the rarest species in the world. We also show that territorial males exhibited strong discrimination of sexual signals by locality: in response to foreign songs, males responded weaker than to songs from their own population. Female responses were infrequent and weak but gave approximately similar results. Our findings not only suggest speciation in the mangrove finch, thereby providing strong support for the central role of sexual signals during speciation, but they have also implications for the conservation of this iconic bird. If speciation is complete, the eastern species will face imminent extinction, because it has a population size of only 5–10 individuals
Comparison of Two Quantitative Methods of Discerning Airspace Enlargement in Smoke-Exposed Mice
In this work, we compare two methods for evaluating and quantifying pulmonary airspace enlargement in a mouse model of chronic cigarette smoke exposure. Standard stereological sample preparation, sectioning, and imaging of mouse lung tissues were performed for semi-automated acquisition of mean linear intercept (Lm) data. After completion of the Lm measurements, D2, a metric of airspace enlargement, was measured in a blinded manner on the same lung images using a fully automated technique developed in-house. An analysis of variance (ANOVA) shows that although Lm was able to separate the smoke-exposed and control groups with statistical significance (p = 0.034), D2 was better able to differentiate the groups (p<0.001) and did so without any overlap between the control and smoke-exposed individual animal data. In addition, the fully automated implementation of D2 represented a time savings of at least 24x over semi-automated Lm measurements. Although D2 does not provide 3D stereological metrics of airspace dimensions as Lm does, results show that it has higher sensitivity and specificity for detecting the subtle airspace enlargement one would expect to find in mild or early stage emphysema. Therefore, D2 may serve as a more accurate screening measure for detecting early lung disease than Lm
Prediction and Topological Models in Neuroscience
In the last two decades, philosophy of neuroscience has predominantly focused on explanation. Indeed, it has been argued that mechanistic models are the standards of explanatory success in neuroscience over, among other things, topological models. However, explanatory power is only one virtue of a scientific model. Another is its predictive power. Unfortunately, the notion of prediction has received comparatively little attention in the philosophy of neuroscience, in part because predictions seem disconnected from interventions. In contrast, we argue that topological predictions can and do guide interventions in science, both inside and outside of neuroscience. Topological models allow researchers to predict many phenomena, including diseases, treatment outcomes, aging, and cognition, among others. Moreover, we argue that these predictions also offer strategies for useful interventions. Topology-based predictions play this role regardless of whether they do or can receive a mechanistic interpretation. We conclude by making a case for philosophers to focus on prediction in neuroscience in addition to explanation alone
Multi-site and multi-depth near-infrared spectroscopy in a model of simulated (central) hypovolemia: lower body negative pressure
Purpose: To test the hypothesis that the sensitivity of near-infrared spectroscopy (NIRS) in reflecting the degree of (compensated) hypovolemia would be affected by the application site and probing depth. We simultaneously applied multi-site (thenar and forearm) and multi-depth (15-2.5 and 25-2.5 mm probe distance) NIRS in a model of simulated hypovolemia: lower body negative pressure (LBNP). Methods: The study group comprised 24 healthy male volunteers who were subjected to an LBNP protocol in which a baseline period of 30 min was followed by a step-wise manipulation of negative pressure in the following steps: 0, -20, -40, -60, -80 and -100 mmHg. Stroke volume and heart rate were measured using volume-clamp finger plethysmography. Two multi-depth NIRS devices were used to measure tissue oxygen saturation (StO2) and tissue hemoglobin index (THI) continuously in the thenar and the forearm. To monitor the shift of blood volume towards the lower extremities, calf THI was measured by single-depth NIRS. Results: The main findings were that the application of LBNP resulted in a significant reduction in stroke volume which was accompanied by a reduction in forearm StO2 and THI. Conclusions: NIRS can be used to detect changes in StO2 and THI consequent upon central hypovolemia. Forearm NIRS measurements reflect hypovolemia more sensitively than thenar NIRS measurements. The sensitivity of these NIRS measurements does not depend on NIRS probing depth. The LBNP-induced shift in blood volume is reflected by a decreased THI in the forearm and an increased THI in the calf
Clusters of galaxies : observational properties of the diffuse radio emission
Clusters of galaxies, as the largest virialized systems in the Universe, are
ideal laboratories to study the formation and evolution of cosmic
structures...(abridged)... Most of the detailed knowledge of galaxy clusters
has been obtained in recent years from the study of ICM through X-ray
Astronomy. At the same time, radio observations have proved that the ICM is
mixed with non-thermal components, i.e. highly relativistic particles and
large-scale magnetic fields, detected through their synchrotron emission. The
knowledge of the properties of these non-thermal ICM components has increased
significantly, owing to sensitive radio images and to the development of
theoretical models. Diffuse synchrotron radio emission in the central and
peripheral cluster regions has been found in many clusters. Moreover
large-scale magnetic fields appear to be present in all galaxy clusters, as
derived from Rotation Measure (RM) studies. Non-thermal components are linked
to the cluster X-ray properties, and to the cluster evolutionary stage, and are
crucial for a comprehensive physical description of the intracluster medium.
They play an important role in the cluster formation and evolution. We review
here the observational properties of diffuse non-thermal sources detected in
galaxy clusters: halos, relics and mini-halos. We discuss their classification
and properties. We report published results up to date and obtain and discuss
statistical properties. We present the properties of large-scale magnetic
fields in clusters and in even larger structures: filaments connecting galaxy
clusters. We summarize the current models of the origin of these cluster
components, and outline the improvements that are expected in this area from
future developments thanks to the new generation of radio telescopes.Comment: Accepted for the publication in The Astronomy and Astrophysics
Review. 58 pages, 26 figure
- …