7 research outputs found
Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites.
The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain unclear, with different experimental and computational approaches providing very different qualitative and quantitative description of the molecular dynamics. Here we use ultrafast 2D vibrational spectroscopy of methylammonium (MA) lead iodide to directly resolve the rotation of the organic cations within the MAPbI3 lattice. Our results reveal two characteristic time constants of motion. Using ab initio molecular dynamics simulations, we identify these as a fast (∼300 fs) "wobbling-in-a-cone" motion around the crystal axis and a relatively slow (∼3 ps) jump-like reorientation of the molecular dipole with respect to the iodide lattice. The observed dynamics are essential for understanding the electronic properties of perovskite materials.This work was supported by The Netherlands Organization for Scientific Research (NWO) through the “Stichting voor Fundamenteel Onderzoek der Materie” (FOM) research program. A.A.B. also acknowledges a VENI grant from the NWO. A.A.B. is currently a Royal Society University Research Fellow. Z.S. and Z.C. acknowledge the ANR-2011-JS09-004-01-PvCoNano project and the EU Marie Curie Career Integration Grant (303824). A.A.B., Z.S., and Z.C. thank Dutch-French Academy for the support through van Gogh grant.This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.jpclett.5b0155
Temperature-Induced Collapse of Elastin-like Peptides Studied by 2DIR Spectroscopy
Elastin-like peptides are hydrophobic biopolymers that exhibit a reversible coacervation transition when the temperature is raised above a critical point. Here, we use a combination of linear infrared spectroscopy, two-dimensional infrared spectroscopy, and molecular dynamics simulations to study the structural dynamics of two elastin-like peptides. Specifically, we investigate the effect of the solvent environment and temperature on the structural dynamics of a short (5-residue) elastin-like peptide and of a long (450-residue) elastin-like peptide. We identify two vibrational energy transfer processes that take place within the amide I' band of both peptides. We observe that the rate constant of one of the exchange processes is strongly dependent on the solvent environment and argue that the coacervation transition is accompanied by a desolvation of the peptide backbone where up to 75% of the water molecules are displaced. We also study the spectral diffusion dynamics of the valine(1) residue that is present in both peptides. We find that these dynamics are relatively slow and indicative of an amide group that is shielded from the solvent. We conclude that the coacervation transition of elastin-like peptides is probably not associated with a conformational change involving this residue
Strategies To Increase the Thermal Stability of Truly Biomimetic Hydrogels: Combining Hydrophobicity and Directed Hydrogen Bonding
Contains fulltext :
180470.pdf (publisher's version ) (Open Access