1,016 research outputs found

    Trans-Planckian Tail in a Theory with a Cutoff

    Get PDF
    Trans-planckian frequencies can be mimicked outside a black-hole horizon as a tail of an exponentially large amplitude wave that is mostly hidden behind the horizon. The present proposal requires implementing a final state condition. This condition involves only frequencies below the cutoff scale. It may be interpreted as a condition on the singularity. Despite the introduction of the cutoff, the Hawking radiation is restored for static observers. Freely falling observers see empty space outside the horizon, but are "heated" as they cross the horizon.Comment: 17 pages, RevTe

    Oxygen phonon branches in overdoped La1.7_{1.7}Sr0.3_{0.3}CuO4_4

    Full text link
    The dispersion of the Cu-O bond-stretching vibrations in overdoped La1.7_{1.7}Sr0.3_{0.3}CuO4_4 (not superconducting) has been studied by high resolution inelastic neutron scattering. It was found that the doping-induced renormalization of the so-called breathing and the half-breathing modes is larger than in optimally doped La1.85_{1.85}Sr0.15_{0.15}CuO4_4. On the other hand, the phonon linewidths are generally smaller in the overdoped sample. Features observed in optimally doped La1.85_{1.85}Sr0.15_{0.15}CuO4_4 which suggest a tendency towards charge stripe formation are absent in overdoped La1.7_{1.7}Sr0.3_{0.3}CuO4_4.Comment: 6 pages, 8 figure

    Quantum limitations on superluminal propagation

    Full text link
    Unstable systems such as media with inverted atomic population have been shown to allow the propagation of analytic wavepackets with group velocity faster than that of light, without violating causality. We illuminate the important role played by unstable modes in this propagation, and show that the quantum fluctuations of these modes, and their unitary time evolution, impose severe restrictions on the observation of superluminal phenomena.Comment: RevTeX 4 page

    ``Weighing'' a closed system and the time-energy uncertainty principle

    Get PDF
    A gedanken-experiment is proposed for `weighing'' the total mass of a closed system from within the system. We prove that for an internal observer the time τ\tau, required to measure the total energy with accuracy ΔE\Delta E, is bounded according to τΔE>\tau \Delta E >\hbar . This time-energy uncertainty principle for a closed system follows from the measurement back-reaction on the system. We generally examine what other conserved observables are in principle measurable within a closed system and what are the corresponding uncertainty relations.Comment: 8 page

    AdS3 Gravitational Instantons from Conformal Field Theory

    Full text link
    A conformal field theory on the boundary of three-dimensional asymptotic anti-de Sitter spaces which appear as near horizon geometry of D-brane bound states is discussed. It is shown that partition functions of gravitational instantons appear as high and low temperature limits of the partition function of the conformal field theory. The result reproduces phase transition between the anti-de Sitter space and the BTZ black hole in the bulk gravity.Comment: 22 pages, minor correction

    First Order Corrections to the Unruh Effect

    Get PDF
    First order corrections to the Unruh effect are calculated from a model of an accelerated particle detector of finite mass. We show that quantum smearing of the trajectory and large recoil essentially do not modify the Unruh effect. Nevertheless, we find corrections to the thermal distribution and to the Unruh temperature. In a certain limit, when the distribution at equilibrium remains exactly thermal, the corrected temperature is found to be T=TU(1TU/M)T = T_U( 1 - T_U/M), where TUT_U is the Unruh temperature. We estimate the consequent corrections to the Hawking temperature and the black hole entropy, and comment on the relationship to the problem of trans-planckian frequencies.Comment: 23 pages, LaTe
    corecore