33 research outputs found

    Synthesis and characterization of some novel 1,2,4-triazoles, 1,3,4-thiadiazoles and Schiff\u27s bases incorporating imidazole moiety as potential antimicrobial agents

    Get PDF
    (1,4,5-Triphenylimidazol-2-yl-thio)butyric acid hydrazide (3) was obtained via alkylation of 1,4,5-triphenylimidazol-2-thiol (1) with ethylbromobutyrate, followed by addition of hydrazine hydrate. Treatment of acid hydrazide 3 with carbon disulfide in an ethanolic potassium hydroxide solution gave the intermediate potassium dithiocarbazinate salt, which was cyclized to 4-amino-5-[(1,4,5-triphenylimidazol-2-yl)thiopropyl]-2H-1,2,4-triazole-3-thione (4) in the presence of hydrazine hydrate. Condensation of compound 3 with alkyl/arylisothiocyanate afforded the corresponding 1-[4-(1,4,5-triphenylimidazol-2-ylthio)butanoyl]-4-alkyl/arylthiosemicarbazides (5-7), which upon refluxing with sodium hydroxide, yielded the corresponding 1,2,4-triazole-3-thiols (8-10). Under acidic conditions, compounds 4-6 were converted to aminothiadiazoles 11-13. Moreover, the series of Schiff bases 14-18 were synthesized from the condensation of compound 3 with different aromatic aldehydes. The newly synthesized compounds were characterized by IR, 1H NMR, 13C NMR and mass spectral analyses. They were also preliminarily screened for their antimicrobial activity

    Evaluation of some functionalized imidazoles and 1,2,4-triazoles as antioxidant additives for industrial lubricating oils and correlating the results with the structures of additives using empirical AM1 calculations

    Get PDF
    AbstractFunctionalized 4,5-diphenyl-imidazoles, 4,5-diphenyl-1,2,4-triazoles and 5-(o-hydroxyphenyl)-4-phenyl-1,2,4-triazoles at the 2-position with thiol, thiomethyl and thiobenzyl groups, have been tested as antioxidant additives for lubricating oils. Whereas the thiomethyl groups in such compounds increased the antioxidant property than the thiol group, the corresponding thiobenzyl groups did the reverse. The results can be explained, based on correlating the electron donating and withdrawing abilities of the substituents with the oxidation stability. The triazoles carrying a phenolic hydroxyl group have more antioxidant power than those without such a group. The imidazoles gave the oils more oxidation stabilities than the two types of triazoles with the same functionalities. The 4,5-diphenyl-2-thiomethyl-imidazole (2), as an additive, has the highest antioxidant property, reaching the level of standard one when its concentration is 1.0% wt. instead of the 0.8% wt. of the standard. The correlation of the antioxidant character of the heterocyclic additives with their structures has been investigated using the semiempirical gas phase AM1 calculations for the studied heterocycles. The relative stability of the imidazoles 1 and 3 compared to 2 were in the order 2>1>3. Similarly, the relative stability of the triazoles are in the same order where 5>4>6 and 8>7>9

    An Eco-Friendly Ultrasound-Assisted Synthesis of Novel Fluorinated Pyridinium Salts-Based Hydrazones and Antimicrobial and Antitumor Screening

    No full text
    The present work reports an efficient synthesis of fluorinated pyridinium salts-based hydrazones under both conventional and eco-friendly ultrasound procedures. The synthetic approach first involves the preparation of halogenated pyridinium salts through the condensation of isonicotinic acid hydrazide (1) with p-fluorobenzaldehyde (2) followed by the nucleophilic alkylation of the resulting N-(4-fluorobenzylidene)isonicotinohydrazide (3) with a different alkyl iodide. The iodide counteranion of 5–10 was subjected to an anion exchange metathesis reaction in the presence of an excess of the appropriate metal salts to afford a new series of fluorinated pyridinium salts tethering a hydrazone linkage 11–40. Ultrasound irradiation led to higher yields in considerably less time than the conventional methods. The newly synthesized ILs were well-characterized with FT-IR, 1H NMR, 13C NMR, 11B, 19F, 31P and mass spectral analyses. The ILs were also screened for their antimicrobial and antitumor activities. Within the series, the salts tethering fluorinated counter anions 11–13, 21–23, 31–33 and 36–38 were found to be more potent against all bacterial and fungal strains at MIC 4–8 ”g/mL. The in vitro antiproliferative activity was also investigated against four tumor cell lines (human ductal breast epithelial tumor T47D, human breast adenocarcinoma MCF-7, human epithelial carcinoma HeLa and human epithelial colorectal adenocarcinoma Caco-2) using the MTT assay, which revealed that promising antitumor activity was exhibited by compounds 5, 12 and 14

    A Green Ultrasound Synthesis, Characterization and Antibacterial Evaluation of 1,4-Disubstituted 1,2,3-Triazoles Tethering Bioactive Benzothiazole Nucleus

    No full text
    The synthesis of N-(benzo[d]thiazol-2-yl)-2-(4-substituted-1H-1,2,3-triazol-1-yl)acetamides 5a–r via the 1,3-dipolar cycloaddition reaction between 2-azido-N-(benzo[d]thiazol-2-yl)acetamide derivatives 3a–c and different alkynes were performed in the presence and absence of ultrasound irradiation. The synthesis was carried out using t-BuOH/H2O (1:1, v/v) as reaction solvents and CuSO4·5H2O/sodium ascorbate as the catalyst. The copper catalyst was implemented to provide the regioselective 1,4-disubstituted 1,2,3-triazoles 5a–r. Significant reductions in reaction times with comparably higher yields were observed when the reactions were carried out under ultrasound irradiation. The structures of the newly synthesized 1,2,3-triazoles were elucidated by IR, NMR, MS, and elemental analyses. They were also screened for their antimicrobial activity against three gram-positive (Streptococcus pneumonia, Bacillus subtilis, and Staphylococcus aureus), three gram-negative (Pseudomonas aeuroginosa, Escherichia coli, and Klebsiella pneumonia), and two fungal strains (Aspergillus fumigates and Candida albicans). Most of the tested compounds displayed promising antimicrobial activities at a Minimum Inhibition Concentration (MIC) of 4–16 ÎŒg/mL

    Green ultrasound-assisted three-component click synthesis of novel 1H-1,2,3-triazole carrying benzothiazoles and fluorinated-1,2,4-triazole conjugates and their antimicrobial evaluation

    No full text
    The present study describes an efficient and ecofriendly, ultrasound, one-pot click cycloaddition approach for the construction of a novel series of 1,4-disubstituted-1,2,3-triazoles tethered with fluorinated 1,2,4-triazole-benzothiazole molecular conjugates. It involved three-component condensation of the appropriate bromoacetamide benzothiazole, sodium azide and 4-alkyl/aryl-5-(2-fluorophenyl)-3-(prop-2-ynylthio)-1,2,4-triazoles 4a-e through a Cu(I)-catalyzed 1,3-dipolar cycloaddition reaction. This approach involves in situ generation of azidoacetamide benzothiazole, followed by condensation with terminal alkynes in the presence of CuSO4/Na-ascorbate in aqueous DMSO under both conventional and ultrasound conditions. Some of the designed 1,2,3-triazole conjugates 6a-o were recognized for their antimicrobial activity against some bacterial and fungal pathogenic strains

    Novel acyclonucleoside analog bearing a 1,2,4-triazole–Schiff base: Synthesis, characterization and analytical studies using square wave-adsorptive stripping voltammetry and HPLC

    Get PDF
    New acyclonucleoside analogs tethered by a 1,2,4-triazole scaffold were synthesized through the condensation of 4-amino-5-(2-phenyleth-1-yl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (2) with benzaldehyde followed by the alkylation of the resulting Schiff base (3)with 2-bromoethanol, 3-chloropropanol and/or 3-chloropropan-1,2-diol. Voltammetric studies were carried out for the analysis of 1 × 10−6 mol L−1 of the newly synthesized acyclonucleoside analogs (4–6) using square wave-adsorptive stripping voltammetry (SW-AdSV). The sharp voltammetric peak and high reduction current were recorded using a Britton–Robinson B–R pH 10 buffer at Ep = −1250 mV on the hanging mercury drop surface (HMDE) and Ag/AgCl reference electrode. Several experimental conditions were studied, such as the supporting electrolytes, the pH, and the accumulation time, as well as the potential, the scan rate, the frequency and the step potential for 4-benzylideneamino-5-(2-phenyleth-1-yl)-3-[(2,3-dihydroxyprop-1-yl)thio]-1,2,4-triazole (6). The analytical performance of the voltammetric technique was investigated through the analysis of the calibration curve, the detection limit, the recovery and the stability. The voltammetric analytical applications were evaluated by the recovery of compound (6) in the urine and plasma samples. The HPLC technique was also applied for the separation of compound (6) from interference using a C-18 (5 Όm) column with UV detection at 254 nm

    Synthesis and Characterization of a New Five and Six Membered Selenoheterocyclic Compounds Homologues of Ebselen

    No full text
    The discovery of the antioxidant activity of selenoenzyme glutathione peroxidase (GPx) has attracted growing attention in the biochemistry of selenium. Among molecules which mimic the structure of the active site of the enzyme, N-phenyl-1,2-benzisoselenazolin-3-one 1, Ebselen, exhibited useful anti-inflammatory properties. It has been extensively investigated and has undergone clinical trials as an anti-inflammatory agent. Unfortunately, Ebselen exhibits relatively poor catalytic activity, prompting attempts to design more efficacious GPx mimetics that would retain his low toxicity while manifesting improved catalytic properties. In this context, novel 1,2-benzoselenazine and 1,2-benzoselenazols, which are five and six membered homologues of Ebselen were synthesized and characterized. One structure has been proven by single crystal X-ray crystallography

    Synthesis of Thiadiazoles and 1,2,4-Triazoles Derived from Cyclopropane Dicarboxylic Acid.

    No full text
    Abstract: New heterocyclic derivatives of cyclopropane dicarboxylic acid comprising thiadiazole and 1,2,4-triazole moieties are reported. Reaction of 1,1-cyclopropane dicarboxylic acid (1) with thiosemicarbazide and phosphorous oxychloride resulted in 1,1-bis (2-amino-1,3,4-thiadiazol-5- yl)cyclopropane (2). Cyclopropane dicarboxylic acid thiosemicarbazide (6) was converted into 1,1-bis(3-thio-4H-1,2,4-triazol-5-yl) cyclopropane (7) by ring closure in an alkaline medium. The thiadiazole 2 and the triazole 7 were converted into a variety of derivatives

    Design and Synthesis of Novel Imidazole Derivatives Possessing Triazole Pharmacophore with Potent Anticancer Activity, and In Silico ADMET with GSK-3ÎČ Molecular Docking Investigations

    No full text
    A library of novel imidazole-1,2,3-triazole hybrids were designed and synthesized based on the hybrid pharmacophore approach. Therefore, copper(I)catalyzed click reaction of thiopropargylated-imidazole 2 with several organoazides yielded two sets of imidazole-1,2,3-triazole hybrids carrying different un/functionalized alkyl/aryl side chains 4a–k and 6a–e. After full spectroscopic characterization using different spectral techniques (IR, 1H, 13C NMR) and elemental analyses, the resulted adducts were screened for their anticancer activity against four cancer cell lines (Caco-2, HCT-116, HeLa, and MCF-7) by the MTT assay and showed significant activity. In-silico molecular docking study was also investigated on one of the prominent cancer target receptors, i.e., glycogen synthase kinase-3β (GSK-3β), revealing a good binding interaction with our potent compound, 4k and was in agreement with the in vitro cytotoxic results. In addition, the ADMET profile was assessed for these novel derivatives to get an insight on their pharmacokinetic/dynamic attributes. Finally, this research design and synthesis offered click chemistry products with interesting biological motifs mainly 1,2,3 triazoles linked to phenyl imidazole as promising candidates for further investigation as anticancer drugs
    corecore