5 research outputs found

    A Naturally Occurring Mutation in ropB Suppresses SpeB Expression and Reduces M1T1 Group A Streptococcal Systemic Virulence

    Get PDF
    Epidemiological studies of group A streptococcus (GAS) have noted an inverse relationship between SpeB expression and invasive disease. However, the role of SpeB in the course of infection is still unclear. In this study we utilize a SpeB-negative M1T1 clinical isolate, 5628, with a naturally occurring mutation in the gene encoding the regulator RopB, to elucidate the role of RopB and SpeB in systemic virulence. Allelic exchange mutagenesis was used to replace the mutated ropB allele in 5628 with the intact allele from the well characterized isolate 5448. The inverse allelic exchange was also performed to replace the intact ropB in 5448 with the mutated allele from 5628. An intact ropB was found to be essential for SpeB expression. While the ropB mutation was shown to have no effect on hemolysis of RBC's, extracellular DNase activity or survival in the presence of neutrophils, strains with the mutated ropB allele were less virulent in murine systemic models of infection. An isogenic SpeB knockout strain containing an intact RopB showed similarly reduced virulence. Microarray analysis found genes of the SpeB operon to be the primary target of RopB regulation. These data show that an intact RopB and efficient SpeB production are necessary for systemic infection with GAS

    The ipsilateral lamina–pedicle angle: can it be used to guide pedicle screw placement in the sub-axial cervical spine?

    No full text
    Pedicle screws in the sub-axial spine are infrequently used because of concerns over their safety and difficulty in placement, despite their superior pullout strength. In the sub-axial cervical vertebrae, we have observed that the lamina appears to project at right angles to the ipsilateral pedicle axis. The aim of this investigation was to confirm the lamina orientation as a reliable landmark for pedicle screw placement. 80 digital cervical spine CT were analysed. The angle formed by the ipsilateral outer lamina cortex to the pedicle axis was recorded. A total of 398 vertebrae were analysed from patients with a mean age of 39.5 years (range 18–78). Average axial lamina–pedicle angle ranged from 96.6° at C3 to 87.2° at C7 in males, and from 95.6° to 87.5° in females. The angle formed by the posterior cortex of the lamina and the ipsilateral pedicle shows a high level of consistency for sub-axial cervical vertebrae ranging from 96° at C3 to 87° at C7. Although the angle is not exactly 90° at all levels as hypothesised, the orientation of the lamina, nevertheless, forms a useful reference plane for insertion of pedicle screws in the sub-axial cervical spine

    Comparison of two novel fluoroscopy-based stereotactic methods for cervical pedicle screw placement and review of the literature

    No full text
    This experimental study was designed to compare two different fluoroscopy-based stereotactic surgical techniques for transcutaneous cervical pedicle screw (CPS) placement in the subaxial human cervical spine: (1) a custom-made aiming frame (AF) in combination with conventional fluoroscopy versus (2) a targeting device in combination with a computer-assisted image guidance system [i.e. virtual fluoroscopy (VF)]. Surgery was carried out on six preserved human total body specimens in a laboratory setting. Sixty pedicles (levels C3–C7) were measured in a multislice computed tomography (CT) image data set prior to surgery. Two groups consisting of three specimens and 30 pedicles each were defined according to the surgical technique. The AF consisted of radiolucent components with a fully adjustable arm for carrying the instruments necessary for placing the screws. The arm was angled according to the cervical pedicle axis, as determined by the preoperative CT scans and intraoperative lateral fluoroscopy. For VF, a targeting device was combined with a computer-assisted image-guided surgery unit. For both stereotactic techniques, 3.5 mm screws made of carbon fibre polyetheretherketone (ECF-PEEK) were inserted transcutaneously through stab incisions. Screw placement was assessed using a four-point grading system ranging from ideal (I) to unacceptable (III) where I = screw centred in pedicle, IIa = perforation of pedicle wall is less than one-fourth of the screw diameter, IIb = perforation of the pedicle wall is more than one-fourth of the screw diameter without contact to neurovascular structures, and III = CPS in contact with neurovascular structures. Fifty-eight pedicle screws could be evaluated without interfering metal artefacts according to the same CT protocol that was used preoperatively. The AF technique achieved a significantly smaller number of screws in contact with neurovascular structures compared with the VF technique (P = 0.021; Fisher’s exact test) (Grade I n = 15; 64.3% AF vs. n = 13; 43.3% VF and Grade III n = 2; 7.1% AF vs. n = 10; 33.3% VF). Although neither of the two techniques was capable of completely preventing CPS perforations, transcutaneous CPS placement with a conventional fluoroscopy-based stereotactic AF can be considered a less expensive alternative to VF. This AF technique is able to reduce the number and severity of lateral pedicle wall violations compared to screw placement via the wide standard posterior open midline approach to the subaxial cervical spine. The results of this study are discussed in context with those obtained from different published modifications, since the first technical description of this surgical technique in 1994 by Abumi and co-workers
    corecore