36 research outputs found

    A Federated DRL Approach for Smart Micro-Grid Energy Control with Distributed Energy Resources

    Full text link
    The prevalence of the Internet of things (IoT) and smart meters devices in smart grids is providing key support for measuring and analyzing the power consumption patterns. This approach enables end-user to play the role of prosumers in the market and subsequently contributes to diminish the carbon footprint and the burden on utility grids. The coordination of trading surpluses of energy that is generated by house renewable energy resources (RERs) and the supply of shortages by external networks (main grid) is a necessity. This paper proposes a hierarchical architecture to manage energy in multiple smart buildings leveraging federated deep reinforcement learning (FDRL) with dynamic load in a distributed manner. Within the context of the developed FDRL-based framework, each agent that is hosted in local building energy management systems (BEMS) trains a local deep reinforcement learning (DRL) model and shares its experience in the form of model hyperparameters to the federation layer in the energy management system (EMS). Simulation studies are conducted using one EMS and up to twenty smart houses that are equipped with photovoltaic (PV) systems and batteries. This iterative training approach enables the proposed discretized soft actor-critic (SAC) agents to aggregate the collected knowledge to expedite the overall learning procedure and reduce costs and CO2 emissions, while the federation approach can mitigate privacy breaches. The numerical results confirm the performance of the proposed framework under different daytime periods, loads, and temperatures.Comment: 7 pages, 6 figures, accepted for publication at IEEE CAMAD 202

    Explanation-Guided Deep Reinforcement Learning for Trustworthy 6G RAN Slicing

    Full text link
    The complexity of emerging sixth-generation (6G) wireless networks has sparked an upsurge in adopting artificial intelligence (AI) to underpin the challenges in network management and resource allocation under strict service level agreements (SLAs). It inaugurates the era of massive network slicing as a distributive technology where tenancy would be extended to the final consumer through pervading the digitalization of vertical immersive use-cases. Despite the promising performance of deep reinforcement learning (DRL) in network slicing, lack of transparency, interpretability, and opaque model concerns impedes users from trusting the DRL agent decisions or predictions. This problem becomes even more pronounced when there is a need to provision highly reliable and secure services. Leveraging eXplainable AI (XAI) in conjunction with an explanation-guided approach, we propose an eXplainable reinforcement learning (XRL) scheme to surmount the opaqueness of black-box DRL. The core concept behind the proposed method is the intrinsic interpretability of the reward hypothesis aiming to encourage DRL agents to learn the best actions for specific network slice states while coping with conflict-prone and complex relations of state-action pairs. To validate the proposed framework, we target a resource allocation optimization problem where multi-agent XRL strives to allocate optimal available radio resources to meet the SLA requirements of slices. Finally, we present numerical results to showcase the superiority of the adopted XRL approach over the DRL baseline. As far as we know, this is the first work that studies the feasibility of an explanation-guided DRL approach in the context of 6G networks.Comment: 6 Pages, 6 figure

    SliceOps: Explainable MLOps for Streamlined Automation-Native 6G Networks

    Full text link
    Sixth-generation (6G) network slicing is the backbone of future communications systems. It inaugurates the era of extreme ultra-reliable and low-latency communication (xURLLC) and pervades the digitalization of the various vertical immersive use cases. Since 6G inherently underpins artificial intelligence (AI), we propose a systematic and standalone slice termed SliceOps that is natively embedded in the 6G architecture, which gathers and manages the whole AI lifecycle through monitoring, re-training, and deploying the machine learning (ML) models as a service for the 6G slices. By leveraging machine learning operations (MLOps) in conjunction with eXplainable AI (XAI), SliceOps strives to cope with the opaqueness of black-box AI using explanation-guided reinforcement learning (XRL) to fulfill transparency, trustworthiness, and interpretability in the network slicing ecosystem. This article starts by elaborating on the architectural and algorithmic aspects of SliceOps. Then, the deployed cloud-native SliceOps working is exemplified via a latency-aware resource allocation problem. The deep RL (DRL)-based SliceOps agents within slices provide AI services aiming to allocate optimal radio resources and impede service quality degradation. Simulation results demonstrate the effectiveness of SliceOps-driven slicing. The article discusses afterward the SliceOps challenges and limitations. Finally, the key open research directions corresponding to the proposed approach are identified.Comment: 8 pages, 6 Figure

    Joint Explainability and Sensitivity-Aware Federated Deep Learning for Transparent 6G RAN Slicing

    Full text link
    In recent years, wireless networks are evolving complex, which upsurges the use of zero-touch artificial intelligence (AI)-driven network automation within the telecommunication industry. In particular, network slicing, the most promising technology beyond 5G, would embrace AI models to manage the complex communication network. Besides, it is also essential to build the trustworthiness of the AI black boxes in actual deployment when AI makes complex resource management and anomaly detection. Inspired by closed-loop automation and Explainable Artificial intelligence (XAI), we design an Explainable Federated deep learning (FDL) model to predict per-slice RAN dropped traffic probability while jointly considering the sensitivity and explainability-aware metrics as constraints in such non-IID setup. In precise, we quantitatively validate the faithfulness of the explanations via the so-called attribution-based \emph{log-odds metric} that is included as a constraint in the run-time FL optimization task. Simulation results confirm its superiority over an unconstrained integrated-gradient (IG) \emph{post-hoc} FDL baseline.Comment: 6 Figure. arXiv admin note: substantial text overlap with arXiv:2307.09494, arXiv:2210.10147, arXiv:2307.1290

    Decentralized Energy Marketplace via NFTs and AI-based Agents

    Full text link
    The paper introduces an advanced Decentralized Energy Marketplace (DEM) integrating blockchain technology and artificial intelligence to manage energy exchanges among smart homes with energy storage systems. The proposed framework uses Non-Fungible Tokens (NFTs) to represent unique energy profiles in a transparent and secure trading environment. Leveraging Federated Deep Reinforcement Learning (FDRL), the system promotes collaborative and adaptive energy management strategies, maintaining user privacy. A notable innovation is the use of smart contracts, ensuring high efficiency and integrity in energy transactions. Extensive evaluations demonstrate the system's scalability and the effectiveness of the FDRL method in optimizing energy distribution. This research significantly contributes to developing sophisticated decentralized smart grid infrastructures. Our approach broadens potential blockchain and AI applications in sustainable energy systems and addresses incentive alignment and transparency challenges in traditional energy trading mechanisms. The implementation of this paper is publicly accessible at \url{https://github.com/RasoulNik/DEM}.Comment: 6 page

    On the Specialization of FDRL Agents for Scalable and Distributed 6G RAN Slicing Orchestration

    Get PDF
    Network slicing enables multiple virtual networks to be instantiated and customized to meet heterogeneous use case requirements over 5G and beyond network deployments. However, most of the solutions available today face scalability issues when considering many slices, due to centralized controllers requiring a holistic view of the resource availability and consumption over different networking domains. In order to tackle this challenge, we design a hierarchical architecture to manage network slices resources in a federated manner. Driven by the rapid evolution of deep reinforcement learning (DRL) schemes and the Open RAN (O-RAN) paradigm, we propose a set of traffic-aware local decision agents (DAs) dynamically placed in the radio access network (RAN). These federated decision entities tailor their resource allocation policy according to the long-term dynamics of the underlying traffic, defining specialized clusters that enable faster training and communication overhead reduction. Indeed, aided by a traffic-aware agent selection algorithm, our proposed Federated DRL approach provides higher resource efficiency than benchmark solutions by quickly reacting to end-user mobility patterns and reducing costly interactions with centralized controllers.Comment: 15 pages, 15 Figures, accepted for publication at IEEE TV

    A collaborative statistical actor-critic learning approach for 6G network slicing control

    Get PDF
    Artificial intelligence (AI)-driven zero-touch massive network slicing is envisioned to be a disruptive technology in beyond 5G (B5G)/6G, where tenancy would be extended to the final consumer in the form of advanced digital use-cases. In this paper, we propose a novel model-free deep reinforcement learning (DRL) framework, called collaborative statistical Actor-Critic (CS-AC) that enables a scalable and farsighted slice performance management in a 6G-like RAN scenario that is built upon mobile edge computing (MEC) and massive multiple-input multiple-output (mMIMO). In this intent, the proposed CS-AC targets the optimization of the latency cost under a long-term statistical service-level agreement (SLA). In particular, we consider the Q-th delay percentile SLA metric and enforce some slice-specific preset constraints on it. Moreover, to implement distributed learners, we propose a developed variant of soft Actor-Critic (SAC) with less hyperparameter sensitivity. Finally, we present numerical results to showcase the gain of the adopted approach on our built OpenAI-based network slicing environment and verify the performance in terms of latency, SLA Q-th percentile, and time efficiency. To the best of our knowledge, this is the first work that studies the feasibility of an AI-driven approach for massive network slicing under statistical SLA.This work has been supported in part by the research projects MonB5G (871780), ZEROTO6G, AGAUR (2017-SGR-891), and PROGRESSUS (876868).Peer ReviewedPostprint (author's final draft

    On the specialization of FDRL agents for scalable and distributed 6G RAN slicing orchestration

    Get PDF
    ©2022 IEEE. Reprinted, with permission, from Rezazadeh, F., Zanzi, L., Devoti, F. et.al. On the Specialization of FDRL Agents for Scalable and Distributed 6G RAN Slicing Orchestration. IEEE Transactions on vehicular technology (Online) October 2022Network slicing enables multiple virtual networks to be instantiated and customized to meet heterogeneous use case requirements over 5G and beyond network deployments. However, most of the solutions available today face scalability issues when considering many slices, due to centralized controllers requiring a holistic view of the resource availability and consumption over different networking domains. In order to tackle this challenge, we design a hierarchical architecture to manage network slices resources in a federated manner. Driven by the rapid evolution of deep reinforcement learning (DRL) schemes and the Open RAN (O-RAN) paradigm, we propose a set of traffic-aware local decision agents (DAs) dynamically placed in the radio access network (RAN). These federated decision entities tailor their resource allocation policy according to the long-term dynamics of the underlying traffic, defining specialized clusters that enable faster training and communication overhead reduction. Indeed, aided by a traffic-aware agent selection algorithm, our proposed Federated DRL approach provides higher resource efficiency than benchmark solutions by quickly reacting to end-user mobility patterns and reducing costly interactions with centralized controllersPeer ReviewedPreprin
    corecore