5 research outputs found

    Interactive Relay Assisted Source Coding

    Full text link
    This paper investigates a source coding problem in which two terminals communicating through a relay wish to estimate one another's source within some distortion constraint. The relay has access to side information that is correlated with the sources. Two different schemes based on the order of communication, \emph{distributed source coding/delivery} and \emph{two cascaded rounds}, are proposed and inner and outer bounds for the resulting rate-distortion regions are provided. Examples are provided to show that neither rate-distortion region includes the other one.Comment: Invited Paper submitted to GlobalSIP: IEEE Global Conference on Signal and Information Processing 201

    Compression-Based Compressed Sensing

    Full text link
    Modern compression algorithms exploit complex structures that are present in signals to describe them very efficiently. On the other hand, the field of compressed sensing is built upon the observation that "structured" signals can be recovered from their under-determined set of linear projections. Currently, there is a large gap between the complexity of the structures studied in the area of compressed sensing and those employed by the state-of-the-art compression codes. Recent results in the literature on deterministic signals aim at bridging this gap through devising compressed sensing decoders that employ compression codes. This paper focuses on structured stochastic processes and studies the application of rate-distortion codes to compressed sensing of such signals. The performance of the formerly-proposed compressible signal pursuit (CSP) algorithm is studied in this stochastic setting. It is proved that in the very low distortion regime, as the blocklength grows to infinity, the CSP algorithm reliably and robustly recovers nn instances of a stationary process from random linear projections as long as their count is slightly more than nn times the rate-distortion dimension (RDD) of the source. It is also shown that under some regularity conditions, the RDD of a stationary process is equal to its information dimension (ID). This connection establishes the optimality of the CSP algorithm at least for memoryless stationary sources, for which the fundamental limits are known. Finally, it is shown that the CSP algorithm combined by a family of universal variable-length fixed-distortion compression codes yields a family of universal compressed sensing recovery algorithms

    Die Sowjetunion und der Umbruch in Osteuropa

    No full text
    SIGLEUuStB Koeln=38*-910106064 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore