5 research outputs found
Different thermal analysis technique application in determination of fold surface-free energy
In this work, the crystallization rates and spherulitic growth rate of miscible blends of poly(vinylidene fluoride) (PVDF) and acrylic rubber (ACM) were determined using differential scanning calorimetry (DSC), real-time FTIR, and optical microscopy. FTIR results suggest that blending does not induce the creation of polymorphic crystalline forms of PVDF. SAXS data demonstrate the formation of interlamellar structure after blending. The fold surface-free energy (σ e) was analyzed and compared using different thermal analysis techniques. The isothermal crystallization curves obtained using real-time FTIR and DSC explored in two different methods: t 1/2 or Avrami equation. While the Avrami equation is more widespread and precise, both analytical methods gave similar free energy of folding values. However, it was found that the direct optical method of measuring spherulitic growth rate yields σ e values 30-50 % lower than those obtained from the overall crystallization rate data. Conversely, the σ e values were found to increase with increasing amorphous ACM phase content regardless of the analytical methods
Recommended from our members
Inhibition is a prevalent mode of activity in the neocortex around awake hippocampal ripples in mice
Coordinated peri-ripple activity in the hippocampal-neocortical network is essential for mnemonic information processing in the brain. Hippocampal ripples likely serve different functions in sleep and awake states. Thus, the corresponding neocortical activity patterns may differ in important ways. We addressed this possibility by conducting voltage and glutamate wide-field imaging of the neocortex with concurrent hippocampal electrophysiology in awake mice. Contrary to our previously published sleep results, deactivation and activation were dominant in post-ripple neocortical voltage and glutamate activity, respectively, especially in the agranular retrosplenial cortex (aRSC). Additionally, the spiking activity of aRSC neurons, estimated by two-photon calcium imaging, revealed the existence of two subpopulations of excitatory neurons with opposite peri-ripple modulation patterns: one increases and the other decreases firing rate. These differences in peri-ripple spatiotemporal patterns of neocortical activity in sleep versus awake states might underlie the reported differences in the function of sleep versus awake ripples