3 research outputs found

    Active Learning of Markov Decision Processes using Baum-Welch algorithm

    No full text
    Cyber-physical systems (CPSs) are naturally modelled as reactive systems with nondeterministic and probabilistic dynamics. Model-based verification techniques have proved effective in the deployment of safety-critical CPSs. Central for a successful application of such techniques is the construction of an accurate formal model for the system. Manual construction can be a resource-demanding and error-prone process, thus motivating the design of automata learning algorithms to synthesise a system model from observed system behaviours. This paper revisits and adapts the classic Baum-Welch algorithm for learning Markov decision processes and Markov chains. For the case of MDPs, which typically demand more observations, we present a model-based active learning sampling strategy that choses examples which are most informative w.r.t. the current model hypothesis. We empirically compare our approach with state-of-the-art tools and demonstrate that the proposed active learning procedure can significantly reduce the number of observations required to obtain accurate models.</p

    An MM Algorithm to Estimate Parameters in Continuous-Time Markov Chains

    No full text
    Prism and Storm are popular model checking tools that provide a number of powerful analysis techniques for Continuous-time Markov chains (CTMCs). The outcome of the analysis is strongly dependent on the parameter values used in the model which govern the timing and probability of events of the resulting CTMC. However, for some applications, parameter values have to be empirically estimated from partially-observable executions. In this work, we address the problem of estimating parameter values of CTMCs expressed as Prism models from a number of partially-observable executions which might possibly miss some dwell time measurements. The semantics of the model is expressed as a parametric CTMC (pCTMC), i.e., CTMC where transition rates are polynomial functions over a set of parameters. Then, building on a theory of algorithms known by the initials MM, for minorizationā€“maximization, we present an iterative maximum likelihood estimation algorithm for pCTMCs. We present an experimental evaluation of the proposed technique on a number of CTMCs from the quantitative verification benchmark set. We conclude by illustrating the use of our technique in a case study: the analysis of the spread of COVID-19 in presence of lockdown countermeasures.</p
    corecore