34,209 research outputs found

    WHAM Observations of H-Alpha, [S II], and [N II] toward the Orion and Perseus Arms: Probing the Physical Conditions of the Warm Ionized Medium

    Get PDF
    A large portion of the Galaxy (l = 123 deg to 164 deg, b = -6 deg to -35 deg), which samples regions of the Local (Orion) spiral arm and the more distant Perseus arm, has been mapped with the Wisconsin H-Alpha Mapper (WHAM) in the H-Alpha, [S II] 6716, and [N II] 6583 lines. Several trends noticed in emission-line investigations of diffuse gas in other galaxies are confirmed in the Milky Way and extended to much fainter emission. We find that the [S II]/H-Alpha and [N II]/H-Alpha ratios increase as absolute H-Alpha intensities decrease. For the more distant Perseus arm emission, the increase in these ratios is a strong function of Galactic latitude and thus, of height above the Galactic plane. The [S II]/[N II] ratio is relatively independent of H-Alpha intensity. Scatter in this ratio appears to be physically significant, and maps of it suggest regions with similar ratios are spatially correlated. The Perseus arm [S II]/[N II] ratio is systematically lower than Local emission by 10%-20%. With [S II]/[N II] fairly constant over a large range of H-Alpha intensities, the increase of [S II]/H-Alpha and [N II]/H-Alpha with |z| seems to reflect an increase in temperature. Such an interpretation allows us to estimate the temperature and ionization conditions in our large sample of observations. We find that WIM temperatures range from 6,000 K to 9,000 K with temperature increasing from bright to faint H-Alpha emission (low to high [S II]/H-Alpha and [N II]/H-Alpha) respectively. Changes in [S II]/[N II] appear to reflect changes in the local ionization conditions (e.g. the S+/S++ ratio). We also measure the electron scale height in the Perseus arm to be 1.0+/-0.1 kpc, confirming earlier, less accurate determinations.Comment: 28 pages, 10 figures. Figures 2 and 3 are full color--GIFs provided here, original PS figures at link below. Accepted for publication in ApJ. More information about the WHAM project can be found at http://www.astro.wisc.edu/wham/ . REVISION: Figure 6, bottom panel now contains the proper points. No other changes have been mad

    Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079

    Get PDF
    We present spectroscopic data of ionized gas in the disk--halo regions of three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength range from [\ion{O}{2}] λ\lambda3727\AA to [\ion{S}{2}] λ\lambda6716.4\AA. The inclusion of the [\ion{O}{2}] emission provides new constraints on the properties of the diffuse ionized gas (DIG), in particular, the origin of the observed spatial variations in the line intensity ratios. We used three different methods to derive electron temperatures, abundances and ionization fractions along the slit. The increase in the [\ion{O}{2}]/Hα\alpha line ratio towards the halo in all three galaxies requires an increase either in electron temperature or in oxygen abundance. Keeping the oxygen abundance constant yields the most reasonable results for temperature, abundances, and ionization fractions. Since a constant oxygen abundance seems to require an increase in temperature towards the halo, we conclude that gradients in the electron temperature play a significant role in the observed variations in the optical line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure

    WHAM Observations of H-alpha from High-Velocity Clouds: Are They Galactic or Extragalactic?

    Full text link
    It has been suggested that high velocity clouds may be distributed throughout the Local Group and are therefore not in general associated with the Milky Way galaxy. With the aim of testing this hypothesis, we have made observations in the H-alpha line of high velocity clouds selected as the most likely candidates for being at larger than average distances. We have found H-alpha emission from 4 out of 5 of the observed clouds, suggesting that the clouds under study are being illuminated by a Lyman continuum flux greater than that of the metagalactic ionizing radiation. Therefore, it appears likely that these clouds are in the Galactic halo and not distributed throughout the Local Group.Comment: 12 pages, 5 eps figures, accepted for publication in ApJ Letter

    Ionization, Kinematics, and Extent of the Diffuse Ionized Gas Halo of NGC 5775

    Get PDF
    We present key results from deep spectra of the Diffuse Ionized Gas (DIG) halo of the edge-on galaxy NGC 5775. [NII]6583 has been detected up to about z=13 kpc above the plane in one of two vertically oriented long slits -- making this the spiral galaxy with the greatest spectroscopically detected halo extent in emission. Key diagnostic line ratios have been measured up to about z=8 kpc, allowing the source of ionization and physical state to be probed. Ionization by a dilute radiation field from massive stars in the disk can explain some of the line ratio behavior, but departures from this picture are clearly indicated, most strongly by the rise of [OIII]/Halpha with z. Velocities of the gas in both slits approach the systemic velocity of the galaxy at several kpc above the plane. We interpret this trend as a decrease in rotation velocity with z, with essentially no rotation at heights of several kpc. Such a trend was observed in the edge-on galaxy NGC 891, but here much more dramatically. This falloff is presumably due to the gravitational potential changing with z, but will also depend on the hydrodynamic nature of the disk-halo cycling of gas and projection effects. More detailed modeling of the ionization and kinematics of this and other edge-ons will be presented in future papers.Comment: figures 1, 2a-d and 3 included. ApJ Letters, in pres

    Grade Retention and School Performance: An Extended Investigation

    Get PDF
    This study extends Reynolds’ (1992) investigation of the social- psychological influences on grade retention and school adjustment in early childhood by tracing the predictors and consequences of grade retention for school achievement, perceived competence, and delinquency in early adolescence (age 14). The study sample included 1,164 (93 percent of the sample from the original study) low-income, mostly black children in the Chicago Longitudinal Study. Twenty-eight percent of the study sample were retained-in-grade by age 14 (first grade to eighth grade). The strongest predictors of retention were early school performance (test scores and grades), sex (boys were more likely to be retained), parent participation in school, and school mobility. Overall, grade retention was significantly associated with lower reading and math achievement at age 14 above and beyond a comprehensive set of explanatory variables. Results based on same-age comparison groups yielded larger effects of retention on school achievement than those based on same-grade comparisons, but both approaches indicated that grade retention was associated with significantly lower reading achievement. In the full model, grade retention was unrelated to perceived school competence at age 12 and to delinquency infractions at age 14. With the exception of reading achievement, retention during the primary grades and retention during grades 4 to 7 yielded a similar pattern of effects. Findings were largely consistent with the earlier study and suggest that intervention approaches other than grade retention are needed to better promote school achievement and adjustment.

    Observations of the Extended Distribution of Ionized Hydrogen in the Plane of M31

    Full text link
    We have used the Wisconsin H-Alpha Mapper (WHAM) to observe the spatially extended distribution of ionized hydrogen in M31 beyond the stellar disk. We obtained five sets of observations, centered near the photometric major axis of M31, that extend from the center of the galaxy to just off the edge of the southwestern HI disk. Beyond the bright stellar disk, but within the HI disk, weak H-alpha is detected with an intensity I(H-alpha) = 0.05 (+0.01 / -0.02) Rayleighs. Since M31 is inclined 77 degrees with respect to the line of sight, this implies that the ambient intergalactic ionizing flux onto each side of M31 is Phi_0 <= 1.6 x 10^4 photons cm^-2 s^-1. Just beyond the outer boundary of the HI disk we find no significant detection of H-alpha and place an upper limit I(H-alpha) <= 0.019 Rayleighs.Comment: To appear in ApJ Letters; 12 pages, 4 figure

    WHAM Observations of H-alpha Emission from High Velocity Clouds in the M, A, and C Complexes

    Full text link
    The first observations of the recently completed Wisconsin H-Alpha Mapper (WHAM) facility include a study of emission lines from high velocity clouds in the M, A, and C complexes, with most of the observations on the M I cloud. We present results including clear detections of H-alpha emission from all three complexes with intensities ranging from 0.06 R to 0.20 R. In every observed direction where there is significant high velocity H I gas seen in the 21 cm line we have found associated ionized hydrogen emitting the H-alpha line. The velocities of the H-alpha and 21 cm emission are well correlated in every case except one, but the intensities are not correlated. There is some evidence that the ionized gas producing the H-alpha emission envelopes the 21 cm emitting neutral gas but the H-alpha "halo", if present, is not large. If the H-alpha emission arises from the photoionization of the H I clouds, then the implied Lyman continuum flux F_{LC} at the location of the clouds ranges from 1.3 to 4.2 x 10^5 photons cm^{-2} s^{-1}. If, on the other hand, the ionization is due to a shock arising from the collision of the high-velocity gas with an ambient medium in the halo, then the density of the pre-shocked gas can be constrained. We have also detected the [S II] 6716 angstrom line from the M I cloud and have evidence that the [S II] to H-alpha ratio varies with location on the cloud.Comment: 32 pages, 18 figures, to appear in ApJ (Sept. 10, 1998
    • …
    corecore