778 research outputs found
The relation between accretion rate and jet power in X-ray luminous elliptical galaxies
Using Chandra X-ray observations of 9 nearby, X-ray luminous ellipticals with
good optical velocity dispersion measurements, we show that a tight correlation
exists between the Bondi accretion rates calculated from the X-ray data and
estimated black hole masses, and the power emerging from these systems in
relativistic jets. The jet powers, inferred from the energies and timescales
required to inflate the cavities observed in the surrounding X-ray emitting
gas, can be related to the accretion rates by a power law model. A significant
fraction (2.2^{+1.0}_{-0.7} per cent, for P_jet=10^{43} erg/s) of the energy
associated with the rest mass of material entering the accretion radius
eventually emerges in the jets. The data also hint that this fraction may rise
slightly with increasing jet power. Our results have significant implications
for studies of accretion, jet formation and galaxy formation. The tight
correlation between P_Bondi and P_jet suggests that the Bondi formulae provide
a reasonable description of the accretion process, despite the likely presence
of magnetic pressure and angular momentum in the accreting gas, and that the
accretion flows are approximately stable over timescales of a few million
years. Our results show that the black hole `engines' at the hearts of large
elliptical galaxies and groups can feed back sufficient energy to stem cooling
and star formation, leading naturally to the observed exponential cut off at
the bright end of the galaxy luminosity function.Comment: Accepted for publication in MNRAS. 10 pages, 4 figures. Includes an
enhanced statistical analysis and some additional data. Conclusions unchange
Measuring Black Hole Spin using X-ray Reflection Spectroscopy
I review the current status of X-ray reflection (a.k.a. broad iron line)
based black hole spin measurements. This is a powerful technique that allows us
to measure robust black hole spins across the mass range, from the stellar-mass
black holes in X-ray binaries to the supermassive black holes in active
galactic nuclei. After describing the basic assumptions of this approach, I lay
out the detailed methodology focusing on "best practices" that have been found
necessary to obtain robust results. Reflecting my own biases, this review is
slanted towards a discussion of supermassive black hole (SMBH) spin in active
galactic nuclei (AGN). Pulling together all of the available XMM-Newton and
Suzaku results from the literature that satisfy objective quality control
criteria, it is clear that a large fraction of SMBHs are rapidly-spinning,
although there are tentative hints of a more slowly spinning population at high
(M>5*10^7Msun) and low (M<2*10^6Msun) mass. I also engage in a brief review of
the spins of stellar-mass black holes in X-ray binaries. In general,
reflection-based and continuum-fitting based spin measures are in agreement,
although there remain two objects (GROJ1655-40 and 4U1543-475) for which that
is not true. I end this review by discussing the exciting frontier of
relativistic reverberation, particularly the discovery of broad iron line
reverberation in XMM-Newton data for the Seyfert galaxies NGC4151, NGC7314 and
MCG-5-23-16. As well as confirming the basic paradigm of relativistic disk
reflection, this detection of reverberation demonstrates that future large-area
X-ray observatories such as LOFT will make tremendous progress in studies of
strong gravity using relativistic reverberation in AGN.Comment: 19 pages. To appear in proceedings of the ISSI-Bern workshop on "The
Physics of Accretion onto Black Holes" (8-12 Oct 2012). Revised version adds
a missing source to Table 1 and Fig.6 (IRAS13224-3809) and corrects the
referencing of the discovery of soft lags in 1H0707-495 (which were in fact
first reported in Fabian et al. 2009
A long hard look at MCG-6-30-15 with XMM-Newton and BeppoSAX
We summarise the primary results from a 320 ks observation of the bright
Seyfert 1 galaxy MCG-6-30-15 with XMM-Newton and Beppo-SAX.Comment: 4 pages, 6 figures. Proc. of the meeting: "The Restless High-Energy
Universe" (Amsterdam, The Netherlands), E.P.J. van den Heuvel, J.J.M. in 't
Zand, and R.A.M.J. Wijers Ed
Atomic X-ray Spectroscopy of Accreting Black Holes
Current astrophysical research suggests that the most persistently luminous
objects in the Universe are powered by the flow of matter through accretion
disks onto black holes. Accretion disk systems are observed to emit copious
radiation across the electromagnetic spectrum, each energy band providing
access to rather distinct regimes of physical conditions and geometric scale.
X-ray emission probes the innermost regions of the accretion disk, where
relativistic effects prevail. While this has been known for decades, it also
has been acknowledged that inferring physical conditions in the relativistic
regime from the behavior of the X-ray continuum is problematic and not
satisfactorily constraining. With the discovery in the 1990s of iron X-ray
lines bearing signatures of relativistic distortion came the hope that such
emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity
in the strong field limit. Here we provide an introduction to this phenomenon.
While the presentation is intended to be primarily tutorial in nature, we aim
also to acquaint the reader with trends in current research. To achieve these
ends, we present the basic applications of general relativity that pertain to
X-ray spectroscopic observations of black hole accretion disk systems, focusing
on the Schwarzschild and Kerr solutions to the Einstein field equations. To
this we add treatments of the fundamental concepts associated with the
theoretical and modeling aspects of accretion disks, as well as relevant topics
from observational and theoretical X-ray spectroscopy.Comment: 63 pages, 21 figures, Einstein Centennial Review Article, Canadian
Journal of Physics, in pres
Weighing black holes with warm absorbers
We present a new technique for determining an upper limit for the mass of the
black hole in active galactic nuclei showing warm absorption features. The
method relies on the balance of radiative and gravitational forces acting on
outflowing warm absorber clouds. It has been applied to 6 objects: five Seyfert
1 galaxies: IC 4329a, MCG-6-30-15, NGC 3516, NGC 4051 and NGC 5548; and one
radio-quiet quasar: MR 2251-178. We discuss our result in comparison with other
methods. The procedure could also be applied to any other radiatively driven
optically thin outflow in which the spectral band covering the major absorption
is directly observed.Comment: 13 pages, 6 figures, 7 tables. MNRAS accepte
Inversion of Plasmaspheric EUV Remote Sensing Data from the STP 72-1 Satellite
Observations of the extreme ultraviolet emission of helium ions at 30.4 nm can be used to study the global shape of the plasmasphere and its dynamical response to geomagnetic forcing. In order to retrieve number densities of plasmaspheric He+ from such observations, we have developed a new inversion technique based on discrete inverse theory, which uses the optical data to optimize a parameterized model of the He+ distribution. We apply this inversion technique to several orbits of data obtained from the Naval Research Laboratory extreme ultraviolet photometric experiment launched on the STP 72-1 satellite in October 1972. The inversion is limited to nighttime conditions where contamination from the topside ionosphere is minimal and where a simple parameterization of the He+ number density is applicable. We obtain excellent fits to the data; however, some of the retrieved model parameters have large uncertainties due to inadequate sampling of the plasmasphere. Our study shows that improved sampling using observations from different locations and view directions would significantly enhance the accuracy of the retrieved model parameters. Using a newly developed three-dimensional imaging tool to visualize the plasmaspheric regions being sampled remotely, we demonstrate that emission features observed from two of the STP 72-1 orbits originate beyond the plasmasphere. Estimated number densities of this feature are roughly consistent with observations of cold plasma seen at geosynchronous orbit by in situ experiments
Spatial differences in wind-driven sediment resuspension in a shallow, coastal estuary
Two locations approximately 11 km apart along the axis of the New River Estuary near Jacksonville, NC USA were continuously monitored for eight years. Included in the observations are vertical profiles of turbidity, temperature, salinity, chl-a, dissolved oxygen, pH and water velocity as well as local wind velocity. Differences between the two sites result from a number of factors, including bathymetry, wind strength, direction and fetch, estuarine morphology, tidal currents and sediment properties. The site near the head of the estuary, Morgan Bay, is deeper, experiences generally weaker winds and has less fetch in most directions. Stones Bay, the down-estuary site, is shallower, experiences stronger winds and has longer fetch, particularly in the prevailing wind directions. Current speeds also differ along the estuary with the down-estuary Stones Bay site being more tidal. The observations were used together with a simple wave model to analyze the estuarine turbidity response to different forcing mechanisms. Results suggest that sediments are resuspended primarily by wind-wave generated bottom stress at both locations. While turbidity is generally higher in Stones Bay than in Morgan Bay, turbidity as a function of the local wave-induced bottom stress (including forcing from all directions) is similar at both locations at low stress but diverges at higher stresses. At higher bottom stresses, turbidity in Stones Bay responds primarily to winds from the NE, S and NW while turbidity in Morgan Bay responds primarily to winds from the NW and S. Accounting for sediment resuspension within an approximate spatial advection scale around each of the observation sites, yields a similar turbidity vs bottom stress response curve for the three primary directions in Stones Bay and the S direction in Morgan Bay but a greater turbidity response for winds from the NW in Morgan Bay. In the latter case, waves are crossing the section of the New River Estuary just downstream of the confluence with the New River and are presumably encountering sediments that are more easily resuspended. Average sediment export is down-river with more sediment leaving Stones Bay than Morgan Bay
Thinking about growth : a cognitive mapping approach to understanding small business development
School of Managemen
Issues and Observations on Applications of the Constrained-Path Monte Carlo Method to Many-Fermion Systems
We report several important observations that underscore the distinctions
between the constrained-path Monte Carlo method and the continuum and lattice
versions of the fixed-node method. The main distinctions stem from the
differences in the state space in which the random walk occurs and in the
manner in which the random walkers are constrained. One consequence is that in
the constrained-path method the so-called mixed estimator for the energy is not
an upper bound to the exact energy, as previously claimed. Several ways of
producing an energy upper bound are given, and relevant methodological aspects
are illustrated with simple examples.Comment: 28 pages, REVTEX, 5 ps figure
Is the Sun Embedded in a Typical Interstellar Cloud?
The physical properties and kinematics of the partially ionized interstellar
material near the Sun are typical of warm diffuse clouds in the solar vicinity.
The interstellar magnetic field at the heliosphere and the kinematics of nearby
clouds are naturally explained in terms of the S1 superbubble shell. The
interstellar radiation field at the Sun appears to be harder than the field
ionizing ambient diffuse gas, which may be a consequence of the low opacity of
the tiny cloud surrounding the heliosphere. The spatial context of the Local
Bubble is consistent with our location in the Orion spur.Comment: "From the Outer Heliosphere to the Local Bubble", held at
International Space Sciences Institute, October 200
- âŠ