2,388 research outputs found
Quantum limits in interferometric measurements
Quantum noise limits the sensitivity of interferometric measurements. It is
generally admitted that it leads to an ultimate sensitivity, the ``standard
quantum limit''. Using a semi-classical analysis of quantum noise, we show that
a judicious use of squeezed states allows one in principle to push the
sensitivity beyond this limit. This general method could be applied to large
scale interferometers designed for gravitational wave detection.Comment: 4 page
Microscopic approach of a time elapsed neural model
The spike trains are the main components of the information processing in the
brain. To model spike trains several point processes have been investigated in
the literature. And more macroscopic approaches have also been studied, using
partial differential equation models. The main aim of the present article is to
build a bridge between several point processes models (Poisson, Wold, Hawkes)
that have been proved to statistically fit real spike trains data and
age-structured partial differential equations as introduced by Pakdaman,
Perthame and Salort
Testing gravity law in the solar system
The predictions of General relativity (GR) are in good agreement with
observations in the solar system. Nevertheless, unexpected anomalies appeared
during the last decades, along with the increasing precision of measurements.
Those anomalies are present in spacecraft tracking data (Pioneer and flyby
anomalies) as well as ephemerides. In addition, the whole theory is challenged
at galactic and cosmic scales with the dark matter and dark energy issues.
Finally, the unification in the framework of quantum field theories remains an
open question, whose solution will certainly lead to modifications of the
theory, even at large distances. As long as those "dark sides" of the universe
have no universally accepted interpretation nor are they observed through other
means than the gravitational anomalies they have been designed to cure, these
anomalies may as well be interpreted as deviations from GR. In this context,
there is a strong motivation for improved and more systematic tests of GR
inside the solar system, with the aim to bridge the gap between gravity
experiments in the solar system and observations at much larger scales. We
review a family of metric extensions of GR which preserve the equivalence
principle but modify the coupling between energy and curvature and provide a
phenomenological framework which generalizes the PPN framework and "fifth
force" extensions of GR. We briefly discuss some possible observational
consequences in connection with highly accurate ephemerides.Comment: Proceedings of Journ\'ees 2010 "Syst\`emes de r\'ef\'erence
spatio-temporels", New challenges for reference systems and numerical
standards in astronom
Thermal Casimir force between nanostructured surfaces
We present detailed calculations for the Casimir force between a plane and a
nanostructured surface at finite temperature in the framework of the scattering
theory. We then study numerically the effect of finite temperature as a
function of the grating parameters and the separation distance. We also infer
non-trivial geometrical effects on the Casimir interaction via a comparison
with the proximity force approximation. Finally, we compare our calculations
with data from experiments performed with nanostructured surfaces
Radiative heat transfer between two dielectric nanogratings in the scattering approach
We present a theoretical study of radiative heat transfer between dielectric
nanogratings in the scattering approach. As a comparision with these exact
results, we also evaluate the domain of validity of Derjaguin's Proximity
Approximation (PA). We consider a system of two corrugated silica plates with
various grating geometries, separation distances, and lateral displacement of
the plates with respect to one another. Numerical computations show that while
the PA is a good approximation for aligned gratings, it cannot be used when the
gratings are laterally displaced. We illustrate this by a thermal modulator
device for nanosystems based on such a displacement
Group Analysis of Self-organizing Maps based on Functional MRI using Restricted Frechet Means
Studies of functional MRI data are increasingly concerned with the estimation
of differences in spatio-temporal networks across groups of subjects or
experimental conditions. Unsupervised clustering and independent component
analysis (ICA) have been used to identify such spatio-temporal networks. While
these approaches have been useful for estimating these networks at the
subject-level, comparisons over groups or experimental conditions require
further methodological development. In this paper, we tackle this problem by
showing how self-organizing maps (SOMs) can be compared within a Frechean
inferential framework. Here, we summarize the mean SOM in each group as a
Frechet mean with respect to a metric on the space of SOMs. We consider the use
of different metrics, and introduce two extensions of the classical sum of
minimum distance (SMD) between two SOMs, which take into account the
spatio-temporal pattern of the fMRI data. The validity of these methods is
illustrated on synthetic data. Through these simulations, we show that the
three metrics of interest behave as expected, in the sense that the ones
capturing temporal, spatial and spatio-temporal aspects of the SOMs are more
likely to reach significance under simulated scenarios characterized by
temporal, spatial and spatio-temporal differences, respectively. In addition, a
re-analysis of a classical experiment on visually-triggered emotions
demonstrates the usefulness of this methodology. In this study, the
multivariate functional patterns typical of the subjects exposed to pleasant
and unpleasant stimuli are found to be more similar than the ones of the
subjects exposed to emotionally neutral stimuli. Taken together, these results
indicate that our proposed methods can cast new light on existing data by
adopting a global analytical perspective on functional MRI paradigms.Comment: 23 pages, 5 figures, 4 tables. Submitted to Neuroimag
- …