1,983 research outputs found

    Quantum limits in interferometric measurements

    Full text link
    Quantum noise limits the sensitivity of interferometric measurements. It is generally admitted that it leads to an ultimate sensitivity, the ``standard quantum limit''. Using a semi-classical analysis of quantum noise, we show that a judicious use of squeezed states allows one in principle to push the sensitivity beyond this limit. This general method could be applied to large scale interferometers designed for gravitational wave detection.Comment: 4 page

    Microscopic approach of a time elapsed neural model

    Get PDF
    The spike trains are the main components of the information processing in the brain. To model spike trains several point processes have been investigated in the literature. And more macroscopic approaches have also been studied, using partial differential equation models. The main aim of the present article is to build a bridge between several point processes models (Poisson, Wold, Hawkes) that have been proved to statistically fit real spike trains data and age-structured partial differential equations as introduced by Pakdaman, Perthame and Salort

    Radiative heat transfer between two dielectric nanogratings in the scattering approach

    Full text link
    We present a theoretical study of radiative heat transfer between dielectric nanogratings in the scattering approach. As a comparision with these exact results, we also evaluate the domain of validity of Derjaguin's Proximity Approximation (PA). We consider a system of two corrugated silica plates with various grating geometries, separation distances, and lateral displacement of the plates with respect to one another. Numerical computations show that while the PA is a good approximation for aligned gratings, it cannot be used when the gratings are laterally displaced. We illustrate this by a thermal modulator device for nanosystems based on such a displacement

    Group Analysis of Self-organizing Maps based on Functional MRI using Restricted Frechet Means

    Full text link
    Studies of functional MRI data are increasingly concerned with the estimation of differences in spatio-temporal networks across groups of subjects or experimental conditions. Unsupervised clustering and independent component analysis (ICA) have been used to identify such spatio-temporal networks. While these approaches have been useful for estimating these networks at the subject-level, comparisons over groups or experimental conditions require further methodological development. In this paper, we tackle this problem by showing how self-organizing maps (SOMs) can be compared within a Frechean inferential framework. Here, we summarize the mean SOM in each group as a Frechet mean with respect to a metric on the space of SOMs. We consider the use of different metrics, and introduce two extensions of the classical sum of minimum distance (SMD) between two SOMs, which take into account the spatio-temporal pattern of the fMRI data. The validity of these methods is illustrated on synthetic data. Through these simulations, we show that the three metrics of interest behave as expected, in the sense that the ones capturing temporal, spatial and spatio-temporal aspects of the SOMs are more likely to reach significance under simulated scenarios characterized by temporal, spatial and spatio-temporal differences, respectively. In addition, a re-analysis of a classical experiment on visually-triggered emotions demonstrates the usefulness of this methodology. In this study, the multivariate functional patterns typical of the subjects exposed to pleasant and unpleasant stimuli are found to be more similar than the ones of the subjects exposed to emotionally neutral stimuli. Taken together, these results indicate that our proposed methods can cast new light on existing data by adopting a global analytical perspective on functional MRI paradigms.Comment: 23 pages, 5 figures, 4 tables. Submitted to Neuroimag

    Does an atom interferometer test the gravitational redshift at the Compton frequency ?

    Full text link
    Atom interferometers allow the measurement of the acceleration of freely falling atoms with respect to an experimental platform at rest on Earth's surface. Such experiments have been used to test the universality of free fall by comparing the acceleration of the atoms to that of a classical freely falling object. In a recent paper, M\"uller, Peters and Chu [Nature {\bf 463}, 926-929 (2010)] argued that atom interferometers also provide a very accurate test of the gravitational redshift when considering the atom as a clock operating at the Compton frequency associated with the rest mass. We analyze this claim in the frame of general relativity and of different alternative theories. We show that the difference of "Compton phases" between the two paths of the interferometer is actually zero in a large class of theories, including general relativity, all metric theories of gravity, most non-metric theories and most theoretical frameworks used to interpret the violations of the equivalence principle. Therefore, in most plausible theoretical frameworks, there is no redshift effect and atom interferometers only test the universality of free fall. We also show that frameworks in which atom interferometers would test the redshift pose serious problems, such as (i) violation of the Schiff conjecture, (ii) violation of the Feynman path integral formulation of quantum mechanics and of the principle of least action for matter waves, (iii) violation of energy conservation, and more generally (iv) violation of the particle-wave duality in quantum mechanics. Standard quantum mechanics is no longer valid in such frameworks, so that a consistent interpretation of the experiment would require an alternative formulation of quantum mechanics. As such an alternative has not been proposed to date, we conclude that the interpretation of atom interferometers as testing the gravitational redshift is unsound.Comment: 26 pages. Modified version to appear in Classical and Quantum Gravit
    corecore