25 research outputs found

    Influence of Wastewater Composition on Microbial Communities of Aerobic Granules and their Nutrient Removal Performances

    Get PDF
    ABSTRACT Basic understanding of aerobic granular sludge (AGS) processes has mainly been obtained in laboratory-scale studies with simple synthetic wastewaters. Two approaches were applied here to make a step toward the comprehension of AGS systems treating real municipal wastewater. One approach consisted in increasing the complexity of the influent composition of an AGS sequencing batch reactor (SBR) fed with volatile fatty acids, the other in starting up four AGS SBRs with four different wastewaters. Nutrient removal could be maintained in the first approach and indications for a change in the population responsible for biological phosphorous removal were obtained (P-removal). The four reactors started up with different wastewaters showed different granulation behaviour and P-removal was impaired in the reactors fed with municipal wastewater. More detailed investigations of the microbial communities will allow to elucidate the reasons behind the observations made in this preliminary study

    Research Brief: Using Sensors and Automated Chlorination to Improve the Microbial Water Quality of On-Site Sewage Treatment Plants in Bengaluru

    No full text
    More than 3,000 on-site sewage treatment plants (STPs) recycle water for landscaping and toilet flushing in Bengaluru. Microbial water quality is essential to protect user health, even for non-potable water reuse applications. However, there is lack of information on short-term variability of the microbial quality of the water. This research brief presents monitoring results from two on-site STPs in Bengaluru, and makes recommendations on how to optimize STP operation to ensure microbiologically safe water at all times

    Making Waves: Why water reuse frameworks need to co-evolve with emerging small-scale technologies

    No full text
    Novel technologies allow to reuse or recycle water for on-site applications such as toilet flushing, showering, or hand washing at the household- or building-scale. Many of these technologies have now reached technology readiness levels that require for verification and validation testing in the field. Results from such field tests of decentralized water reuse systems have been published over the past few years, and observed performance is often compared to quality targets from water reuse frameworks (WRFs). An inspection of ten recent journal publications reveals that targets from WRFs are often misinterpreted, and the emphasis of these publications is too often on demonstrating successful aspects of the technologies rather than critically evaluating the quality of the produced water. We hypothesize that some of these misinterpretations are due to ambiguous definition of scopes of WRFs (e.g., “unrestricted urban reuse”) and unclear applicability for novel recycling systems that treat the water for applications that go beyond the reuse scopes defined in current WRFs. Additional challenges are linked to the verification of WRF quality targets in small-scale and decentralized systems under economic and organizational constraints. Current WRFs are not suitable for all possible reuse cases, and there is need for a critical discussion of quality targets and associated monitoring methods. As the scope of water reuse has expanded greatly over the past years, WRFs need to address new applications and advances in technology, including in monitoring capacities

    Defining Risk-Based Monitoring Frequencies to Verify the Performance of Water Treatment Barriers

    No full text
    Preventing failures of water treatment barriers can play an important role in meeting the increasing demand for microbiologically safe water. The development and integration of failure prevention strategies into quantitative microbial risk assessment (QMRA) offer opportunities to support the design and operation of treatment trains. This study presents existing failure models and extends them to guide the development of risk-based operational monitoring strategies. For barriers with rapid performance loss, results show that a failure of 15 s should be reliably detected to verify a log reduction value (LRV) of 6.0; thus, detecting and remediating these failures may be beyond current technology. For chemical disinfection with a residual, failure durations in order of minutes should be reliably detected to verify a LRV of 6.0. Short-term failures are buffered because the disinfectant residual concentration sustains a partial reduction performance. Therefore, increasing the contact time and hydraulic mixing reduces the impact of failures. These findings demonstrate the importance of defining precise frequencies to monitor barrier performances during operation. Overall, this study highlights the utility of process-specific models for developing failure prevention strategies for water safety management.ISSN:2328-893

    Chemical composition, nutrient-balancing and biological treatment of hand washing greywater

    No full text
    On-site biological hand washing water treatment can improve global access to safe hand washing water, but requires a thorough understanding of the chemical composition of the water to be treated, and an effective treatment strategy. This study first presents a detailed characterization of the individual inputs to hand washing water. We demonstrate (i) that soap is likely the most significant input in hand washing water, representing ∌90% of mass loading, and (ii) that inputs to hand washing water have low concentrations of biologically-essential macro- and micro-nutrients (nitrogen, phosphorus, potassium, copper, zinc, molybdenum and cobalt) with respect to carbon, which may impair biological carbon removal. This study next formulates a recipe that recreates a representative composition of hand washing water and develops a procedure to identify and supplement nutrients in which this recipe is estimated to be deficient. Batch testing of the nutrient-supplemented hand washing water with an inoculum of planktonic bacteria demonstrated improved assimilable organic carbon removal (99% vs. 86% removal) and produced lower final dissolved organic carbon concentrations (1.7 mgC/L vs. 3.5 mgC/L) compared to realistic (nutrient-deficient) washing water. Supplementing nutrients did promote cell growth (50x higher final total cell count). Full-scale testing in a biologically activated membrane bioreactor (BAMBi) system treating 75 L/day of nutrient-supplemented hand washing water showed that long-term operation (100 days) can deliver effective carbon removal (95%) without detrimental fouling or other disruptions caused by cell growth. This work demonstrates that biological treatment in a BAMBi system, operated with appropriate nutrient-balancing offers an effective solution for decentralized treatment of light greywater.ISSN:0043-1354ISSN:1879-244

    Ensuring microbial water quality for on-site water reuse: Importance of online sensors for reliable operation

    No full text
    A growing number of cities and regions are promoting or mandating on-site treatment and reuse of wastewater, which has resulted in the implementation of several thousand on-site water reuse systems on a global scale. However, there is only limited information on the (microbial) water quality from implemented systems. The focus of this study was on two best-in-class on-site water reuse systems in Bengaluru, India, which typically met the local water quality requirements during monthly compliance testing. This study aimed to (i) assess the microbial quality of the reclaimed water at a high temporal resolution (daily or every 15 min), and (ii) explore whether measurements from commercially available sensors can be used to improve the operation of such systems. The monitoring campaign revealed high variations in microbial water quality, even in these best-in-class systems, rendering the water inadequate for the intended reuse applications (toilet flushing and landscape irrigation). These variations were attributed to two key factors: (1) the low frequency of chlorination, and (2) fluctuations of the chlorine demand of the water, in particular of ammonium concentrations. Such fluctuations are likely inherent to on-site systems, which rely on a low level of process control. The monitoring campaign showed that the microbial water quality was most closely related to oxidation–reduction potential (ORP) and free chlorine sensors. Due to its relatively low cost and low need for maintenance, the ORP emerges as a compelling candidate for automating the chlorination to effectively manage variations in chlorine demand and ensure safe water reuse. Overall, this study underscores the necessity of integrating treatment trains, operation, and monitoring for safe on-site water reuse.ISSN:2589-914

    Sensor setpoints that ensure compliance with microbial water quality targets for membrane bioreactor and chlorination treatment in on-site water reuse systems

    No full text
    Widespread implementation of on-site water reuse systems is hindered by the limited ability to ensure the level of treatment and protection of human health during operation. In this study, we tested the ability of five commercially available online sensors (free chlorine (FC), oxidation-reduction potential (ORP), pH, turbidity, UV absorbance at 254 nm) to predict the microbial water quality in membrane bioreactors followed by chlorination using logistic regression-based and mechanism-based models. The microbial water quality was assessed in terms of removal of enteric bacteria from the wastewater, removal of enteric viruses, and regrowth of bacteria in the treated water. We found that FC and ORP alone could predict the microbial water quality well, with ORP-based models generally performing better. We further observed that prediction accuracy did not increase when data from multiple sensors were integrated. We propose a methodology to link online sensor measurements to risk-based water quality targets, providing operation setpoints protective of human health for specific combinations of wastewaters and reuse applications. For instance, we recommend a minimum ORP of 705 mV to ensure a virus log-removal of 5, and an ORP of 765 mV for a log-removal of 6. These setpoints were selected to ensure that the percentage of events where the water is predicted to meet the quality target but it does not remains below 5%. Such a systematic approach to set sensor setpoints could be used in the development of water reuse guidelines and regulations that aim to cover a range of reuse applications with differential risks to human health.ISSN:2589-914

    Disruptions in loading and aeration impact effluent chlorine demand during biological greywater recycling

    No full text
    Greywater recycling systems designed for high-quality applications, such as hand washing, must deliver microbially safe and aesthetically acceptable water under the challenging operating conditions present where such systems are needed most urgently. As chlorination is the most popular strategy for reducing bacterial concentrations in greywater, understanding chlorination in the context of disruptive and challenging operation is essential to designing robust treatment. In this study, we have examined how disruptions through overall increased loading, interrupted aeration and increased ammonia loading have impacted the chlorine demand of the water produced by a greywater recycling system. We also presented concentrations of significant chemicals that contributed to this chlorine demand. The results indicate that a 1 d period with 8 times (8x) the normal design loading produced a peak chlorine demand of 0.74 mg Cl2/L, which is approximately double the baseline value. While this chlorine demand can be overcome by adding more chlorine, tests involving disruptions in aeration or feeding additional ammonia into the bioreactor produced much greater increases (>30x). The risks of increased chlorine demand on microbial safety can be overcome by limiting ammonia inputs to the system, providing backup systems to ensure sufficient aeration, or through additional anti-bacterial measures that do not depend on maintaining residual chlorine
    corecore